Solveeit Logo

Question

Question: If ABCD is a parallelogram and the position vectors of A, B, C are \(\mathbf{i} + 3\mathbf{j} + 5\ma...

If ABCD is a parallelogram and the position vectors of A, B, C are i+3j+5k,i+j+k\mathbf{i} + 3\mathbf{j} + 5\mathbf{k},\mathbf{i} + \mathbf{j} + \mathbf{k} and 7i+7j+7k,7\mathbf{i} + 7\mathbf{j} + 7\mathbf{k}, then the position vector of D will be

A

7i+5j+3k7\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}

B

7i+9j+11k7\mathbf{i} + 9\mathbf{j} + 11\mathbf{k}

C

9i+11j+13k9\mathbf{i} + 11\mathbf{j} + 13\mathbf{k}

D

8i+8j+8k8\mathbf{i} + 8\mathbf{j} + 8\mathbf{k}

Answer

7i+9j+11k7\mathbf{i} + 9\mathbf{j} + 11\mathbf{k}

Explanation

Solution

Let position vector of D is xi+yj+zk,x\mathbf{i} + y\mathbf{j} + z\mathbf{k}, then AB=DC\overset{\rightarrow}{AB} = \overset{\rightarrow}{DC} 2j4k=(7x)i+(7y)j+(7z)k\Rightarrow - 2\mathbf{j} - 4\mathbf{k} = (7 - x)\mathbf{i} + (7 - y)\mathbf{j} + (7 - z)\mathbf{k}

x=7,y=9,z=11.\Rightarrow x = 7,y = 9,z = 11.

Hence position vector of DD will be 7i+9j+11k7\mathbf{i} + 9\mathbf{j} + 11\mathbf{k}.