Question
Question: If ABCD is a parallelogram and the position vectors of A, B, C are \(\mathbf{i} + 3\mathbf{j} + 5\ma...
If ABCD is a parallelogram and the position vectors of A, B, C are i+3j+5k,i+j+k and 7i+7j+7k, then the position vector of D will be
A
7i+5j+3k
B
7i+9j+11k
C
9i+11j+13k
D
8i+8j+8k
Answer
7i+9j+11k
Explanation
Solution
Let position vector of D is xi+yj+zk, then AB→=DC→ ⇒−2j−4k=(7−x)i+(7−y)j+(7−z)k
⇒x=7,y=9,z=11.
Hence position vector of D will be 7i+9j+11k.