Solveeit Logo

Question

Mathematics Question on circle

If ABCDABCD is a cyclic quadrilateral with AB=6,BC=4,CD=5,DA=3AB = 6, BC = 4, CD = 5, DA = 3 and ABC\angle ABC = θ\theta then cosθcos\, \theta =

A

313\frac{3}{13}

B

1876\frac{18}{76}

C

1678\frac{16}{78}

D

7886\frac{78}{86}

Answer

313\frac{3}{13}

Explanation

Solution

In ΔABC\Delta A B C,
AC2=AB2+BC22(AB)(AC)cosθ[A C^{2}=A B^{2}+B C^{2}-2(A B)(A C) \cos \theta[ By Cosine rule ]]
AC2=62+422(6)(4)cosθ\Rightarrow A C^{2}=6^{2}+4^{2}-2(6)(4) \cos \theta
AC2=36+1648cosθ\Rightarrow A C^{2}=36+16-48 \cos \theta
AC2=5248cosθ\Rightarrow A C^{2}=52-48 \cos \theta \dots(i)
Now, In ΔADC\Delta A D C
AC2=AD2+DC22(AD)(DC)cos(180θ)A C^{2}=A D^{2}+D C^{2}-2(A D)(D C) \cos \left(180^{\circ}-\theta\right)
=32+52+2(3)(5)cosθ[=3^{2}+5^{2}+2(3)(5) \cos \theta [ By Cosine rule ]]
AC2=9+25+30cosθA C^{2}=9+25+30 \cos \theta
AC2=34+30cosθA C^{2}=34+30 \cos \theta \dots(ii)
By Eqs. (i) and (ii), we get
5248cosθ=34+30cosθ52-48 \cos \theta=34+30 \cos \theta
5234=48cosθ+30cosθ\Rightarrow 52-34=48 \cos \theta+30 \cos \theta
18=78cosθ\Rightarrow 18=78 \cos \theta
cosθ=1878=313\Rightarrow \cos \theta=\frac{18}{78}=\frac{3}{13}