Solveeit Logo

Question

Question: If ABCD is a cyclic quadrilateral, then the value of \(\cos A - \cos B + \cos C - \cos D =\)...

If ABCD is a cyclic quadrilateral, then the value of cosAcosB+cosCcosD=\cos A - \cos B + \cos C - \cos D =

A

0

B

1

C

2(cosBcosD)2(\cos B - \cos D)

D

2(cosAcosC)2(\cos A - \cos C)

Answer

0

Explanation

Solution

We know that A+C=180,A + C = 180{^\circ},since ABCDABCD is a cyclic

quadrilateral.A=180C\Rightarrow A = 180{^\circ} - C

cosA=cos(180C)=cosC\Rightarrow \cos A = \cos(180{^\circ} - C) = - \cos C

cosA+cosC=0\Rightarrow \cos A + \cos C = 0 .....(i)

Now B+D=180,B + D = 180{^\circ},then cosB+cosD=0\cos B + \cos D = 0 .....(ii)

Subtracting (ii) from (i), we get

cosAcosB+cosCcosD=0\cos A - \cos B + \cos C - \cos D = 0.