Question
Question: If ABCD is a cyclic quadrilateral, then the value of \(\cos A - \cos B + \cos C - \cos D =\)...
If ABCD is a cyclic quadrilateral, then the value of cosA−cosB+cosC−cosD=
A
0
B
1
C
2(cosB−cosD)
D
2(cosA−cosC)
Answer
0
Explanation
Solution
We know that A+C=180∘,since ABCD is a cyclic
quadrilateral.⇒A=180∘−C
⇒cosA=cos(180∘−C)=−cosC
⇒cosA+cosC=0 .....(i)
Now B+D=180∘,then cosB+cosD=0 .....(ii)
Subtracting (ii) from (i), we get
cosA−cosB+cosC−cosD=0.