Solveeit Logo

Question

Question: If abcd = 1, where a, b, c, d are positive reals then the minimum value of \({{a}^{2}}+{{b}^{2}}+{{c...

If abcd = 1, where a, b, c, d are positive reals then the minimum value of a2+b2+c2+d2+ab+bc+cd+ad+ac+bd{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bd
( a ) 6
( b ) 10
( c ) 12
( d ) 20

Explanation

Solution

For, solving this question we will use concept of A.M and G.M and the relation between A.M and G.M which is given as A.M of these n items is always equals to or greater than G.M of these n items that is A.MG.M\text{A}\text{.M}\ge \text{G}\text{.M} by which we will get the possible minimum value of a2+b2+c2+d2+ab+bc+cd+ad+ac+bd{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bd.

Complete step-by-step solution:
In question, it is given that abcd = 1 and all four numbers a, b, c, d are positive real numbers.
We have to find the minimum possible value of a2+b2+c2+d2+ab+bc+cd+ad+ac+bd{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bd.
Okay, now we will first see what is Arithmetic Mean ( A.M ) and geometric Mean ( G.M )
The arithmetic mean is the average of a set of numerical values, as calculated by adding them together and dividing them by the number of terms in the set.
So, if we have n items say, n1,n2,.......,nn{{n}_{1}},{{n}_{2}},.......,{{n}_{n}} then, A.M of n items will be equals to
A.M = n1+n2+.......+nnn\text{A}\text{.M = }\dfrac{{{n}_{1}}+{{n}_{2}}+.......+{{n}_{n}}}{n}
Geometric mean is the calculation by first doing product of n terms and then finding nth{{\text{n}}^{\text{th}}} root of product.
So, if we have n items say, n1,n2,.......,nn{{n}_{1}},{{n}_{2}},.......,{{n}_{n}} then, A.M of n items will be equals to
G.M = (n1n2.......nn)1n\text{G}\text{.M = (}{{n}_{1}}\cdot {{n}_{2}}\cdot .......\cdot {{n}_{n}}{{)}^{\dfrac{1}{n}}}
Now, let we have 10 terms as a2b2c2d2, ab, bc, cd, ad, ac, bd{{\text{a}}^{\text{2}}}\text{, }{{\text{b}}^{\text{2}}}\text{, }{{\text{c}}^{\text{2}}}\text{, }{{\text{d}}^{\text{2}}}\text{, ab, bc, cd, ad, ac, bd}, the A.M and G.M of numbers will be
A.M = (a2+b2+c2+d2+ab+bc+cd+ad+ac+bd)10\text{A}\text{.M = }\dfrac{\text{(}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}
G.M = (a2b2c2d2abbccdadacbd)110\text{G}\text{.M = (}{{\text{a}}^{\text{2}}}\cdot {{\text{b}}^{\text{2}}}\cdot {{\text{c}}^{\text{2}}}\cdot {{\text{d}}^{\text{2}}}\cdot \text{ab}\cdot \text{bc}\cdot \text{cd}\cdot \text{ad}\cdot \text{ac}\cdot \text{bd}{{)}^{\dfrac{1}{10}}}
Now, we know that if we have n items say n1,n2,.......,nn{{n}_{1}},{{n}_{2}},.......,{{n}_{n}}, then A.M of these n items is always equals to or greater than G.M of these n items that is
A.MG.M\text{A}\text{.M}\ge \text{G}\text{.M}
So, for 10 numbers a2b2c2d2, ab, bc, cd, ad, ac, bd{{\text{a}}^{\text{2}}}\text{, }{{\text{b}}^{\text{2}}}\text{, }{{\text{c}}^{\text{2}}}\text{, }{{\text{d}}^{\text{2}}}\text{, ab, bc, cd, ad, ac, bd},
 (a2+b2+c2+d2+ab+bc+cd+ad+ac+bd)10(a2b2c2d2abbccdadacbd)110\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(}{{\text{a}}^{\text{2}}}\cdot {{\text{b}}^{\text{2}}}\cdot {{\text{c}}^{\text{2}}}\cdot {{\text{d}}^{\text{2}}}\cdot \text{ab}\cdot \text{bc}\cdot \text{cd}\cdot \text{ad}\cdot \text{ac}\cdot \text{bd})}^{\dfrac{1}{10}}}
On simplifying we get,
 (a2+b2+c2+d2+ab+bc+cd+ad+ac+bd)10(a5b5c5d5)110\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(}{{\text{a}}^{5}}\cdot {{\text{b}}^{5}}\cdot {{\text{c}}^{5}}\cdot {{\text{d}}^{5}})}^{\dfrac{1}{10}}}
 (a2+b2+c2+d2+ab+bc+cd+ad+ac+bd)10(abcd)5×110\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(a}\cdot \text{b}\cdot \text{c}\cdot \text{d})}^{5\times }}^{\dfrac{1}{10}}
On simplifying, we get
 (a2+b2+c2+d2+ab+bc+cd+ad+ac+bd)10(abcd)12\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(a}\cdot \text{b}\cdot \text{c}\cdot \text{d})}^{\dfrac{1}{2}}}
As it is given that, abcd = 1
So,  (a2+b2+c2+d2+ab+bc+cd+ad+ac+bd)10(1)12\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(1})}^{\dfrac{1}{2}}}
 (a2+b2+c2+d2+ab+bc+cd+ad+ac+bd)101\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge 1
Taking 10 from denominator on left hand side to numerator on right hand side by using cross multiplication, we get
 (a2+b2+c2+d2+ab+bc+cd+ad+ac+bd)10\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})\ge 10
Hence, we get  (a2+b2+c2+d2+ab+bc+cd+ad+ac+bd)10\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})\ge 10 which means value of a2+b2+c2+d2+ab+bc+cd+ad+ac+bd{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bdis always equals to or greater than 10.
So, minimum value of a2+b2+c2+d2+ab+bc+cd+ad+ac+bd{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bd is 10. Hence, option ( b ) is correct.

Note: For, solving such question we can use concept of A.M and G.M so, one must know the meaning, formula and relation of A.M and G.M that is, if we have n items say, n1,n2,.......,nn{{n}_{1}},{{n}_{2}},.......,{{n}_{n}} then, A.M = n1+n2+.......+nnn\text{A}\text{.M = }\dfrac{{{n}_{1}}+{{n}_{2}}+.......+{{n}_{n}}}{n} and G.M = (n1n2.......nn)1n\text{G}\text{.M = (}{{n}_{1}}\cdot {{n}_{2}}\cdot .......\cdot {{n}_{n}}{{)}^{\dfrac{1}{n}}}. It is always important to solve questions carefully with no error as answer may get change we can make equation more complex.