Solveeit Logo

Question

Question: If \(a,b,c\)are unequal what is the condition that the value of the following determinant is zero\(\...

If a,b,ca,b,care unequal what is the condition that the value of the following determinant is zeroΔ=aa2a3+1bb2b3+1cc2c3+1\Delta = \left| \begin{matrix} a & a^{2} & a^{3} + 1 \\ b & b^{2} & b^{3} + 1 \\ c & c^{2} & c^{3} + 1 \end{matrix} \right|.

A

1+abc=01 + abc = 0

B

a+b+c+1=0a + b + c + 1 = 0

C

(ab)(bc)(ca)=0(a - b)(b - c)(c - a) = 0

D

None of these

Answer

1+abc=01 + abc = 0

Explanation

Solution

Splitting the determinant into two determinants, we get Δ=1aa21bb21cc2+abc1aa21bb21cc2=0\Delta = \left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| + abc\left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| = 0

= (1+abc)[(ab)(bc)(ca)]=0(1 + abc)\lbrack(a - b)(b - c)(c - a)\rbrack = 0

Because a, b, c are different, the second factor cannot be zero. Hence, option (1), 1+abc=1 + abc =0, is correct.