Solveeit Logo

Question

Question: If **a**,**b**,**c** are three coplanar vectors, then \([ \mathbf { a } + \mathbf { b } \mathbf { b...

If a,b,c are three coplanar vectors, then [a+bb+cc+a]=[ \mathbf { a } + \mathbf { b } \mathbf { b } + \mathbf { c } \mathbf { c } + \mathbf { a } ] =

A

[a b c]

B

2 [a b c]

C

3 [a b c]

D

0

Answer

0

Explanation

Solution

[a+bb+cc+a][ \mathbf { a } + \mathbf { b } \quad \mathbf { b } + \mathbf { c } \mathbf { c } + \mathbf { a } ]

+[aca]+[bbc]+[bba]+[bcc]+[bca]+ [ \mathbf { a } \mathbf { c } \mathbf { a } ] + [ \mathbf { b } \mathbf { b } \mathbf { c } ] + [ \mathbf { b } \mathbf { b } \mathbf { a } ] + [ \mathbf { b } \mathbf { c } \mathbf { c } ] + [ \mathbf { b } \mathbf { c } \mathbf { a } ]

=[abc]+[bca]=2[abc]=0= [ \mathbf { a } \mathbf { b } \mathbf { c } ] + [ \mathbf { b } \mathbf { c } \mathbf { a } ] = 2 [ \mathbf { a } \mathbf { b } \mathbf { c } ] = 0 , (\bullet \bulleta,b,c are coplanar).