Solveeit Logo

Question

Question: If \(A,B,C\) are the vertices of a triangle whose position vectors are **a**, **b**, **c** and G is ...

If A,B,CA,B,C are the vertices of a triangle whose position vectors are a, b, c and G is the centroid of the ΔABC,\Delta ABC, then GA+GB+GC\overset{\rightarrow}{GA} + \overset{\rightarrow}{GB} + \overset{\rightarrow}{GC} is

A

0

B

A+B+C\overset{\rightarrow}{A} + \overset{\rightarrow}{B} + \overset{\rightarrow}{C}

C

a+b+c3\frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3}

D

a+bc3\frac{\mathbf{a} + \mathbf{b} - \mathbf{c}}{3}

Answer

0

Explanation

Solution

Position vectors of vertices A, B and C of the triangle ABC = a, b and c. We know that position vector of centroid of the triangle (G) =a+b+c3\frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3}.

Therefore ,GA+GB+GC\overset{\rightarrow}{GA} + \overset{\rightarrow}{GB} + \overset{\rightarrow}{GC}

=(aa+b+c3)+(ba+b+c3)+(ca+b+c3)= \left( \mathbf{a} - \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3} \right) + \left( \mathbf{b} - \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3} \right) + \left( \mathbf{c} - \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3} \right)

=13[2abc+2bac+2cab]=0= \frac{1}{3}\lbrack 2\mathbf{a} - \mathbf{b} - \mathbf{c} + 2\mathbf{b} - \mathbf{a} - \mathbf{c} + 2\mathbf{c} - \mathbf{a} - \mathbf{b}\rbrack = \mathbf{0}.