Solveeit Logo

Question

Question: If \(a,b,c\) are the roots of the equation \(x^{3} - 3b^{2}x + 2c^{3}\) then the equation whose root...

If a,b,ca,b,c are the roots of the equation x33b2x+2c3x^{3} - 3b^{2}x + 2c^{3} then the equation whose roots are xax - aand xbx - b, is.

A

a=b=ca = - b = - c

B

a=2b=2ca = 2b = 2c

C

a=b=ca = b = c

D

None of these

Answer

a=b=ca = - b = - c

Explanation

Solution

Here ax2+bx+c=0ax^{2} + bx + c = 0and 2x2+8x+2=0,2x^{2} + 8x + 2 = 0,

If roots are 9x2+6x+1=0,9x^{2} + 6x + 1 = 0, then sum of roots are

1α,1β\frac{1}{\alpha},\frac{1}{\beta}

and product 2x2+3x+18=02x^{2} + 3x + 18 = 0

=αβ+1+1+1αβ=2+ca+ac= \alpha \beta + 1 + 1 + \frac { 1 } { \alpha \beta } = 2 + \frac { c } { a } + \frac { a } { c } x2+6x+9=0x^{2} + 6x + 9 = 0

Hence required equation is given by

x26x+9=0x^{2} - 6x + 9 = 0

6x26x+1=0,6x^{2} - 6x + 1 = 0,.

Trick : Let 12[a+bα+cα2+dα3]\frac{1}{2}\left\lbrack a + b\alpha + c\alpha^{2} + d\alpha^{3} \right\rbrack, 12[a+bα+cα2+dα3]+12[a+bβ+cβ2+dβ3]\frac{1}{2}\left\lbrack a + b\alpha + c\alpha^{2} + d\alpha^{3} \right\rbrack + \frac{1}{2}\left\lbrack a + b\beta + c\beta^{2} + d\beta^{3} \right\rbrack, then α=1\alpha = 1 a1+b2+c3+d4\frac{a}{1} + \frac{b}{2} + \frac{c}{3} + \frac{d}{4}

a2b2+c3d4\frac{a}{2} - \frac{b}{2} + \frac{c}{3} - \frac{d}{4} and tanα\tan\alpha

Therefore, required equation must be

tanβ\tan\betai.e. x2px+q=0,x^{2} - px + q = 0,

Here (1) gives this equation on putting

sin2(α+β)=\sin^{2}(\alpha + \beta) =.