Solveeit Logo

Question

Question: If \(a,b,c\) are positive integers, then the determinant \(\Delta = \left| \begin{matrix} a^{2} + x ...

If a,b,ca,b,c are positive integers, then the determinant Δ=a2+xabacabb2+xbcacbcc2+x\Delta = \left| \begin{matrix} a^{2} + x & ab & ac \\ ab & b^{2} + x & bc \\ ac & bc & c^{2} + x \end{matrix} \right| is divisible by.

A

x3x^{3}

B

x2x^{2}

C

(a2+b2+c2)(a^{2} + b^{2} + c^{2})

D

None of these

Answer

x2x^{2}

Explanation

Solution

Δ=1abca3+axa2ba2cab2b3+bxb2cc2ac2bc3+cx\mathbf{\Delta}\mathbf{=}\frac{\mathbf{1}}{\mathbf{abc}}\left| \begin{matrix} \mathbf{a}^{\mathbf{3}}\mathbf{+ ax} & \mathbf{a}^{\mathbf{2}}\mathbf{b} & \mathbf{a}^{\mathbf{2}}\mathbf{c} \\ \mathbf{a}\mathbf{b}^{\mathbf{2}} & \mathbf{b}^{\mathbf{3}}\mathbf{+ bx} & \mathbf{b}^{\mathbf{2}}\mathbf{c} \\ \mathbf{c}^{\mathbf{2}}\mathbf{a} & \mathbf{c}^{\mathbf{2}}\mathbf{b} & \mathbf{c}^{\mathbf{3}}\mathbf{+ cx} \end{matrix} \right|

= (abc)(ac+ab+bc)=a+b+c\mathbf{(abc)(ac + ab + bc) = a + b + c}

= (a2+b2+c2+x)×111b2b2+xb2c2c2c2+x\mathbf{(}\mathbf{a}^{\mathbf{2}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\mathbf{+}\mathbf{c}^{\mathbf{2}}\mathbf{+ x)}\mathbf{\times}\left| \begin{matrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{b}^{\mathbf{2}} & \mathbf{b}^{\mathbf{2}}\mathbf{+ x} & \mathbf{b}^{\mathbf{2}} \\ \mathbf{c}^{\mathbf{2}} & \mathbf{c}^{\mathbf{2}} & \mathbf{c}^{\mathbf{2}}\mathbf{+ x} \end{matrix} \right|

**{**Applying R1R1+R2+R3}R_{1} \rightarrow R_{1} + R_{2} + R_{3}\}

=(a2+b2+c2+x)100b2x0c20x\mathbf{= (}\mathbf{a}^{\mathbf{2}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\mathbf{+}\mathbf{c}^{\mathbf{2}}\mathbf{+ x)}\left| \begin{matrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{b}^{\mathbf{2}} & \mathbf{x} & \mathbf{0} \\ \mathbf{c}^{\mathbf{2}} & \mathbf{0} & \mathbf{x} \end{matrix} \right| {\{ Applying  &C2C2C1&C3C3C1}\left. \ \begin{array}{r} \mathbf{\&}\mathbf{C}_{\mathbf{2}}\mathbf{\rightarrow}\mathbf{C}_{\mathbf{2}}\mathbf{-}\mathbf{C}_{\mathbf{1}} \\ \mathbf{\&}\mathbf{C}_{\mathbf{3}}\mathbf{\rightarrow}\mathbf{C}_{\mathbf{3}}\mathbf{-}\mathbf{C}_{\mathbf{1}} \end{array} \right\}

= x2(a2+b2+c2+x)\mathbf{x}^{\mathbf{2}}\mathbf{(}\mathbf{a}^{\mathbf{2}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\mathbf{+}\mathbf{c}^{\mathbf{2}}\mathbf{+ x)}.

Hence Δ\Delta is divisible by x2x^{2} as well as by x.