Solveeit Logo

Question

Question: If a,b,c are non zero real numbers and if the equations \((a - 1)x = y + z,(b - 1)y = z + x,(c - 1)z...

If a,b,c are non zero real numbers and if the equations (a1)x=y+z,(b1)y=z+x,(c1)z=x+y(a - 1)x = y + z,(b - 1)y = z + x,(c - 1)z = x + y has a non trivial solution then ab+bc+caab + bc + ca equals.

A

a+b+ca + b + c

B

abc

C

1

D

None of these

Answer

abc

Explanation

Solution

For non-trivial solution

a11111b1111c=0\left| \begin{matrix} a - 1 & - 1 & - 1 \\ 1 & 1 - b & 1 \\ 1 & 1 & 1 - c \end{matrix} \right| = 0

Applying C1C1C2andC2C2C3C_{1} \rightarrow C_{1} - C_{2}andC_{2} \rightarrow C_{2} - C_{3}then a01bb10c1c=0\left| \begin{matrix} a & 0 & - 1 \\ b & - b & 1 \\ 0 & c & 1 - c \end{matrix} \right| = 0

a(b+bcc)01(bc+0)=0a( - b + bc - c) - 0 - 1(bc + 0) = 0

ab+abcacbc=0- ab + abc - ac - bc = 0

ab+bc+ca=abcab + bc + ca = abc