Solveeit Logo

Question

Question: If \(a,b,c\) are in A.P., then the value of \(\left| \begin{matrix} x + 2 & x + 3 & x + a \\ x + 4 &...

If a,b,ca,b,c are in A.P., then the value of x+2x+3x+ax+4x+5x+bx+6x+7x+c\left| \begin{matrix} x + 2 & x + 3 & x + a \\ x + 4 & x + 5 & x + b \\ x + 6 & x + 7 & x + c \end{matrix} \right| is.

A

x(a+b+c)x - (a + b + c)

B

9x2+a+b+c9x^{2} + a + b + c

C

a+b+ca + b + c

D

0

Answer

0

Explanation

Solution

Let A=x+2x+3x+ax+4x+5x+bx+6x+7x+c\mathbf{A =}\left| \begin{matrix} \mathbf{x + 2} & \mathbf{x + 3} & \mathbf{x + a} \\ \mathbf{x + 4} & \mathbf{x + 5} & \mathbf{x + b} \\ \mathbf{x + 6} & \mathbf{x + 7} & \mathbf{x + c} \end{matrix} \right|

Applying C2C2C1,C_{2} \rightarrow C_{2} - C_{1}, we get,

A=x+21x+ax+41x+bx+61x+cA = \left| \begin{matrix} x + 2 & 1 & x + a \\ x + 4 & 1 & x + b \\ x + 6 & 1 & x + c \end{matrix} \right|

Applying aa3a4bb3b4cc3c4+aa31bb31cc31=0\left| \begin{matrix} a & a^{3} & a^{4} \\ b & b^{3} & b^{4} \\ c & c^{3} & c^{4} \end{matrix} \right| + \left| \begin{matrix} a & a^{3} & - 1 \\ b & b^{3} & - 1 \\ c & c^{3} & - 1 \end{matrix} \right| = 0 and R3R3R1R_{3} \rightarrow R_{3} - R_{1}

A=x+21x+a20ba40ca=1(2c2a4b+4a)A = \left| \begin{matrix} x + 2 & 1 & x + a \\ 2 & 0 & b - a \\ 4 & 0 & c - a \end{matrix} \right| = - 1(2c - 2a - 4b + 4a)

= 2(2bca)2(2b - c - a)

\because a, b, c are in A.P. ⇒ A = 0.