Question
Question: If \(a,b,c\) are different and \(\left| \begin{matrix} a & a^{2} & a^{3} - 1 \\ b & b^{2} & b^{3} - ...
If a,b,c are different and abca2b2c2a3−1b3−1c3−1=0, then.
A
a+b+c=0
B
abc=1
C
a+b+c=1
D
ab+bc+ca=0
Answer
abc=1
Explanation
Solution
abca2b2c2a3−1b3−1c3−1=0⇒ abca2b2c2a3b3c3−abca2b2c2111=0
⇒ abc111abca2b2c2−111abca2b2c2=0
⇒ (abc−1)111abca2b2c2=0
Since a,b,c are different, so
Hence abc−1=0i.e., abc=1.