Solveeit Logo

Question

Question: If \(a,b,c\) are different and \(\left| \begin{matrix} a & a^{2} & a^{3} - 1 \\ b & b^{2} & b^{3} - ...

If a,b,ca,b,c are different and aa2a31bb2b31cc2c31=0\left| \begin{matrix} a & a^{2} & a^{3} - 1 \\ b & b^{2} & b^{3} - 1 \\ c & c^{2} & c^{3} - 1 \end{matrix} \right| = 0, then.

A

a+b+c=0a + b + c = 0

B

abc=1abc = 1

C

a+b+c=1a + b + c = 1

D

ab+bc+ca=0ab + bc + ca = 0

Answer

abc=1abc = 1

Explanation

Solution

aa2a31bb2b31cc2c31=0\left| \begin{matrix} a & a^{2} & a^{3} - 1 \\ b & b^{2} & b^{3} - 1 \\ c & c^{2} & c^{3} - 1 \end{matrix} \right| = 0aa2a3bb2b3cc2c3aa21bb21cc21=0\left| \begin{matrix} a & a^{2} & a^{3} \\ b & b^{2} & b^{3} \\ c & c^{2} & c^{3} \end{matrix} \right| - \left| \begin{matrix} a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1 \end{matrix} \right| = 0

abc1aa21bb21cc21aa21bb21cc2=0abc\left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| - \left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| = 0

(abc1)1aa21bb21cc2=0(abc - 1)\left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| = 0

Since a,b,ca,b,c are different, so

Hence abc1=0abc - 1 = 0i.e., abc=1abc = 1.