Question
Question: If \(A,B,C\) are angles of a triangle, then \(\sin 2A + \sin 2B - \sin 2C\) is equal to...
If A,B,C are angles of a triangle, then sin2A+sin2B−sin2C is equal to
A
4sinAcosBcosC
B
4cosA
C
4sinAcosA
D
4cosAcosBsinC
Answer
4cosAcosBsinC
Explanation
Solution
sin2A+sin2B−sin2C=2sinAcosA+2cos(B+C)sin(B−C)[∵A+B+C=π,B+C=π−A,cos(B+C)= $$\cos(\pi - A),\cos(B + C) = - \cos A,\sin(B + C) = \sin A\rbrack
= 2cosA[sinA−sin(B−C)] = 2cosA[sin(B+C)−sin(B−C)]
= 2cosA.2cosB.sinC=4cosA.cosB.sinC
Trick: First put A=B=C=60o, for these values. Options (1) and (2) satisfies the condition.
Now put A=B=45o and C=90o, then only (4) satisfies.
Hence (4) is the answer.