Solveeit Logo

Question

Question: If a,b,c, $a_1,b_1,c_1$ are non zero complex numbers satisfying $\frac{a}{a_1}+\frac{b}{b_1}+\frac{c...

If a,b,c, a1,b1,c1a_1,b_1,c_1 are non zero complex numbers satisfying aa1+bb1+cc1=1+i\frac{a}{a_1}+\frac{b}{b_1}+\frac{c}{c_1}=1+i and a1a+b1b+c1c=0\frac{a_1}{a}+\frac{b_1}{b}+\frac{c_1}{c}=0, then a2a12+b2b12+c2c12\frac{a^2}{a_1^2}+\frac{b^2}{b_1^2}+\frac{c^2}{c_1^2} is equal to

A

2+2i

B

2i

C

2-2i

D

2

Answer

2i

Explanation

Solution

Let

x=aa1,y=bb1,z=cc1x=\frac{a}{a_1}, y=\frac{b}{b_1}, z=\frac{c}{c_1}.

Then, the given equations become:

x+y+z=1+ix+y+z=1+i and 1x+1y+1z=0\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0.

The second equation can be rewritten as:

xy+yz+zxxyz=0    xy+yz+zx=0\frac{xy+yz+zx}{xyz}=0 \implies xy+yz+zx=0.

We need to find:

x2+y2+z2x^2+y^2+z^2.

Recall the identity:

(x+y+z)2=x2+y2+z2+2(xy+yz+zx)(x+y+z)^2 = x^2+y^2+z^2+2(xy+yz+zx).

Since xy+yz+zx=0xy+yz+zx=0, we have:

x2+y2+z2=(x+y+z)2=(1+i)2x^2+y^2+z^2=(x+y+z)^2=(1+i)^2.

Now, compute (1+i)2(1+i)^2:

(1+i)2=1+2i+i2=1+2i1=2i(1+i)^2=1+2i+i^2=1+2i-1=2i.

Thus, a2a12+b2b12+c2c12=2i\frac{a^2}{a_1^2}+\frac{b^2}{b_1^2}+\frac{c^2}{c_1^2}=2i.