Question
Question: If a+b/2,a+c/2 and b+c/2 then find minimum value of a+b+c...
If a+b/2,a+c/2 and b+c/2 then find minimum value of a+b+c
Answer
19
Explanation
Solution
Solution:
We are given that
2a+b,2a+c,2b+cform a geometric progression. Thus, the middle term squared equals the product of the extreme terms:
(2a+c)2=2a+b⋅2b+c.Multiplying by 4, we have:
(a+c)2=(a+b)(b+c).A useful method is to write:
2a+b=x,2a+c=xr,2b+c=xr2,with r>1 (since a<b<c). Therefore:
a+b=2x,a+c=2xr,b+c=2xr2.Express a, b, and c in terms of x and r. Adding a+b and a+c gives:
2a+b+c=2x+2xr.But b+c=2xr2, so:
2a=2x+2xr−2xr2⟹a=x(1+r−r2).Then, from a+b=2x:
b=2x−a=2x−x(1+r−r2)=x(1−r+r2).Similarly, from a+c=2xr:
c=2xr−a=x(2r−1−r+r2)=x(r+r2−1).To make a, b, and c positive integers, choose r=23. Then:
a=x(1+23−49)=x(44+6−9)=4x, b=x(1−23+49)=x(44−6+9)=47x, c=x(23+49−1)=x(46+9−4)=411x.Choose the smallest x allowing integers, namely x=4. Then:
a=1,b=7,c=11.Thus:
a+b+c=1+7+11=19.Minimal Explanation:
- For GP: (a+c)2=(a+b)(b+c).
- Let 2a+b=x, 2a+c=xr, 2b+c=xr2. Solve to get: a=x(1+r−r2),b=x(1−r+r2),c=x(r+r2−1).
- With r=23 and x=4, obtain a=1, b=7, c=11 so a+b+c=19.