Solveeit Logo

Question

Question: If a+b/2,a+c/2 and b+c/2 then find minimum value of a+b+c...

If a+b/2,a+c/2 and b+c/2 then find minimum value of a+b+c

Answer

19

Explanation

Solution

Solution:

We are given that

a+b2,a+c2,b+c2\frac{a+b}{2},\quad \frac{a+c}{2},\quad \frac{b+c}{2}

form a geometric progression. Thus, the middle term squared equals the product of the extreme terms:

(a+c2)2=a+b2b+c2.\left(\frac{a+c}{2}\right)^2=\frac{a+b}{2}\cdot\frac{b+c}{2}.

Multiplying by 4, we have:

(a+c)2=(a+b)(b+c).(a+c)^2 = (a+b)(b+c).

A useful method is to write:

a+b2=x,a+c2=xr,b+c2=xr2,\frac{a+b}{2}=x,\quad \frac{a+c}{2}=xr,\quad \frac{b+c}{2}=xr^2,

with r>1r>1 (since a<b<ca<b<c). Therefore:

a+b=2x,a+c=2xr,b+c=2xr2.a+b=2x,\quad a+c=2xr,\quad b+c=2xr^2.

Express aa, bb, and cc in terms of xx and rr. Adding a+ba+b and a+ca+c gives:

2a+b+c=2x+2xr.2a+b+c=2x+2xr.

But b+c=2xr2b+c=2xr^2, so:

2a=2x+2xr2xr2a=x(1+rr2).2a=2x+2xr-2xr^2\quad \Longrightarrow\quad a=x(1+r-r^2).

Then, from a+b=2xa+b=2x:

b=2xa=2xx(1+rr2)=x(1r+r2).b=2x-a=2x-x(1+r-r^2)=x(1-r+r^2).

Similarly, from a+c=2xra+c=2xr:

c=2xra=x(2r1r+r2)=x(r+r21).c=2xr-a=x(2r-1-r+r^2)=x(r+r^2-1).

To make aa, bb, and cc positive integers, choose r=32r=\frac{3}{2}. Then:

a=x(1+3294)=x(4+694)=x4,a=x\left(1+\frac{3}{2}-\frac{9}{4}\right)=x\left(\frac{4+6-9}{4}\right)=\frac{x}{4}, b=x(132+94)=x(46+94)=7x4,b=x\left(1-\frac{3}{2}+\frac{9}{4}\right)=x\left(\frac{4-6+9}{4}\right)=\frac{7x}{4}, c=x(32+941)=x(6+944)=11x4.c=x\left(\frac{3}{2}+\frac{9}{4}-1\right)=x\left(\frac{6+9-4}{4}\right)=\frac{11x}{4}.

Choose the smallest xx allowing integers, namely x=4x=4. Then:

a=1,b=7,c=11.a=1,\quad b=7,\quad c=11.

Thus:

a+b+c=1+7+11=19.a+b+c=1+7+11=19.

Minimal Explanation:

  1. For GP: (a+c)2=(a+b)(b+c)(a+c)^2 = (a+b)(b+c).
  2. Let a+b2=x\frac{a+b}{2}=x, a+c2=xr\frac{a+c}{2}=xr, b+c2=xr2\frac{b+c}{2}=xr^2. Solve to get: a=x(1+rr2),b=x(1r+r2),c=x(r+r21).a=x(1+r-r^2),\quad b=x(1-r+r^2),\quad c=x(r+r^2-1).
  3. With r=32r=\frac{3}{2} and x=4x=4, obtain a=1a=1, b=7b=7, c=11c=11 so a+b+c=19a+b+c=19.