Solveeit Logo

Question

Question: If AB is a double ordinate of the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}\)= 1 such th...

If AB is a double ordinate of the hyperbola x2a2y2b2\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}= 1 such that DOAB (O is the origin) is an equilateral triangle, then the eccentricity ‘e’ of the hyperbola satisfies-

A

e>3\sqrt{3}

B

1 < e <23\frac{2}{\sqrt{3}}

C

e = 23\frac{2}{\sqrt{3}}

D

e >23\frac{2}{\sqrt{3}}

Answer

e >23\frac{2}{\sqrt{3}}

Explanation

Solution

Let AB = 2l, then AM = 1

Thus, we have A = [ab2+l2b,l]\left\lbrack \frac{a\sqrt{b^{2} + l^{2}}}{b},l \right\rbrack

Now, since OAB is an equilateral triangle,

Therefore we have, OA = 2l i.e. OM2 + AM2

= (2l)2 i.e. a2(b2+l2)b2\frac{a^{2}(b^{2} + l^{2})}{b^{2}} + l2 = 4l2

Gives l2 = a2b23b2a2\frac{a^{2}b^{2}}{3b^{2} - a^{2}} > 0 i.e. 3b2 – a2 > 0 i.e. 3a2 (e2 – 1) > a2 Gives e > 23\frac{2}{\sqrt{3}}.