Solveeit Logo

Question

Question: If A+B = $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and A-2B = $\begin{bmatrix} -1 & 1 \\ 0 & -1...

If A+B = [1111]\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} and A-2B = [1101]\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}, then A

A

[1121]\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}

B

[2/31/31/32/3]\begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}

C

[1/32/32/31/3]\begin{bmatrix} 1/3 & 2/3 \\ 2/3 & 1/3 \end{bmatrix}

D

[1111]\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}

Answer

[1/312/31/3]\begin{bmatrix} 1/3 & 1 \\ 2/3 & 1/3 \end{bmatrix}

Explanation

Solution

Let the given equations be:

  1. A+B=[1111]A + B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}

  2. A2B=[1101]A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}

We have a system of two linear equations with two matrix variables, A and B. We can solve this system using methods similar to solving algebraic equations.

Multiply equation (1) by 2:

2(A+B)=2[1111]2(A + B) = 2 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}

2A+2B=[2222]2A + 2B = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} (Equation 3)

Now, add equation (3) and equation (2):

(2A+2B)+(A2B)=[2222]+[1101](2A + 2B) + (A - 2B) = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}

Combine the terms involving A and B on the left side:

(2A+A)+(2B2B)=3A+0=3A(2A + A) + (2B - 2B) = 3A + \mathbf{0} = 3A

Add the matrices on the right side:

[2222]+[1101]=[2+(1)2+12+02+(1)]=[1321]\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 + (-1) & 2 + 1 \\ 2 + 0 & 2 + (-1) \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}

So, we have:

3A=[1321]3A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}

To find A, multiply the matrix by the scalar 13\frac{1}{3}:

A=13[1321]A = \frac{1}{3} \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}

A=[13×113×313×213×1]A = \begin{bmatrix} \frac{1}{3} \times 1 & \frac{1}{3} \times 3 \\ \frac{1}{3} \times 2 & \frac{1}{3} \times 1 \end{bmatrix}

A=[1/312/31/3]A = \begin{bmatrix} 1/3 & 1 \\ 2/3 & 1/3 \end{bmatrix}

The calculated matrix A is [1/312/31/3]\begin{bmatrix} 1/3 & 1 \\ 2/3 & 1/3 \end{bmatrix}. This does not match any of the provided options. There appears to be an error in the provided options.