Solveeit Logo

Question

Question: If \(ab + bc + ca = 0\) and\(\left| \begin{matrix} a - x & c & b \\ c & b - x & a \\ b & a & c - x \...

If ab+bc+ca=0ab + bc + ca = 0 andaxcbcbxabacx=0\left| \begin{matrix} a - x & c & b \\ c & b - x & a \\ b & a & c - x \end{matrix} \right| = 0, then one of the value of x is.

A

(a2+b2+c2)12(a^{2} + b^{2} + c^{2})^{\frac{1}{2}}

B

[32(a2+b2+c2)]12\left\lbrack \frac{3}{2}(a^{2} + b^{2} + c^{2}) \right\rbrack^{\frac{1}{2}}

C

[12(a2+b2+c2)]12\left\lbrack \frac{1}{2}(a^{2} + b^{2} + c^{2}) \right\rbrack^{\frac{1}{2}}

D

None of these

Answer

(a2+b2+c2)12(a^{2} + b^{2} + c^{2})^{\frac{1}{2}}

Explanation

Solution

Applying $A^{- 1} = \frac{1}{- 2}\begin{bmatrix}

  • 1 & 1 & - 1 \ 8 & - 6 & 2 \
  • 5 & 3 & - 1 \end{bmatrix}$

A32=2A_{32} = 2

(a+b+cx)[{(bx)(cx)a2}+c(ac+x)}( a + b + c - x ) \left[ \left\{ ( b - x ) ( c - x ) - a ^ { 2 } \right\} + c ( a - c + x ) \right\} A12=8,A_{12} = 8,

A=20A=[012123311]|A| = - 2 \neq 0A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}

x=0x = 0

1 \times 1 + 2 \times 2 + ( - 1)(0) \\ 3 \times 1 + 0 \times 2 + 2 \times 0 \\ 4 \times 1 + 5 \times 2 + 0 \times 0 \end{matrix} \right.\ $$ ∴ $= \begin{bmatrix} 1 & - 1 & 0 \\ - 2 & 3 & - 4 \\ - 2 & 3 & - 3 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 2 & - 1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$.