Solveeit Logo

Question

Question: If \(a,b\) and **c** are unit coplanar vectors then the scalar triple product \(\lbrack 2a - b2b - c...

If a,ba,b and c are unit coplanar vectors then the scalar triple product [2ab2bc2ca]\lbrack 2a - b2b - c2c - a\rbrack is equal to

A

0

B

1

C

3- \sqrt{3}

D

3\sqrt{3}

Answer

0

Explanation

Solution

Here [abc]=0\lbrack\mathbf{abc}\rbrack = 0

The given scalar triple product = k[a b c] = 0.