Solveeit Logo

Question

Question: If $a_r = cos \frac{2\pi}{9} + isin \frac{2\pi}{9}; r=1,2,3....i = \sqrt{-1}$ then the determinant $...

If ar=cos2π9+isin2π9;r=1,2,3....i=1a_r = cos \frac{2\pi}{9} + isin \frac{2\pi}{9}; r=1,2,3....i = \sqrt{-1} then the determinant a1a2a3a4a5a6a7a8a9\begin{vmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix} is equal to:

A

a2a6a4a8a_2a_6 - a_4a_8

B

a9a_9

C

a1a9a3a7a_1a_9 - a_3a_7

D

a5a_5

Answer

Option C: a1a9a3a7a_1a_9 - a_3a_7

Explanation

Solution

We are given

ar=cos2πr9+isin2πr9=ωr,with ω=exp(2πi9)a_r=\cos\frac{2\pi r}{9}+ i\sin\frac{2\pi r}{9} = \omega^r,\quad\text{with }\omega=\exp\left(\frac{2\pi i}{9}\right)

so that

a1=ω,a2=ω2,a3=ω3,a4=ω4,,a9=ω9=1.a_1=\omega,\quad a_2=\omega^2,\quad a_3=\omega^3,\quad a_4=\omega^4,\quad \ldots,\quad a_9=\omega^9=1.

The 3×33\times3 matrix is

M=(ωω2ω3ω4ω5ω6ω7ω8ω9).M=\begin{pmatrix} \omega & \omega^2 & \omega^3 \\ \omega^4 & \omega^5 & \omega^6 \\ \omega^7 & \omega^8 & \omega^9 \end{pmatrix}.

Observation by factoring rows:

  • Factor ω0=1\omega^0=1 from the 1st row
  • Factor ω3\omega^3 from the 2nd row, since
    ω4=ω3ω,  ω5=ω3ω2,  ω6=ω3ω3\omega^4=\omega^3\cdot\omega,\; \omega^5=\omega^3\cdot\omega^2,\; \omega^6=\omega^3\cdot\omega^3.
  • Factor ω6\omega^6 from the 3rd row, since
    ω7=ω6ω,  ω8=ω6ω2,  ω9=ω6ω3\omega^7=\omega^6\cdot\omega,\; \omega^8=\omega^6\cdot\omega^2,\; \omega^9=\omega^6\cdot\omega^3.

After factoring, the determinant becomes

detM=ω0+3+6ωω2ω3ωω2ω3ωω2ω3=ω90=0.\det M = \omega^{0+3+6}\begin{vmatrix} \omega & \omega^2 & \omega^3 \\ \omega & \omega^2 & \omega^3 \\ \omega & \omega^2 & \omega^3 \end{vmatrix} = \omega^9 \cdot 0 = 0.

(The three rows become identical, hence the determinant is 0.)

Relating to options:
The given options include one choice which also evaluates to 0. Check option C:

a1a9a3a7=ωω9ω3ω7=ω1ω10.a_1a_9 - a_3a_7=\omega\cdot\omega^9-\omega^3\cdot\omega^7 = \omega\cdot1-\omega^{10}.

Since ω9=1\omega^9=1 we have ω10=ω1=ω\omega^{10}=\omega^1=\omega. Thus,

ωω=0.\omega-\omega = 0.

Thus, the determinant equals option C.