Question
Question: If $a_k = 1 + cos(\frac{k\pi}{20}) + sin(\frac{k\pi}{20})$, $\frac{1}{2} - sin(\frac{k\pi}{10})$, $k...
If ak=1+cos(20kπ)+sin(20kπ), 21−sin(10kπ), k∈N then-
यदि ak=1+cos(20kπ)+sin(20kπ), 21−sin(10kπ), k∈N तब-

a1+a3=a21+a23
a1+a3+a21+a23=0
a1a3=a21a23
a1a3a21a23=2561
None of the options are correct
Solution
Let ak=(1+cos(20kπ)+sin(20kπ))(21−sin(10kπ)).
Let Pk=1+cos(20kπ)+sin(20kπ) and Qk=21−sin(10kπ).
We observe the following properties for k∈{1,3}:
-
Pk+20=1+cos(20(k+20)π)+sin(20(k+20)π)=1+cos(20kπ+π)+sin(20kπ+π)=1−cos(20kπ)−sin(20kπ).
Thus, Pk+Pk+20=2.
And PkPk+20=(1+(cos(20kπ)+sin(20kπ)))(1−(cos(20kπ)+sin(20kπ)))
=1−(cos(20kπ)+sin(20kπ))2=1−(cos2(20kπ)+sin2(20kπ)+2sin(20kπ)cos(20kπ))
=1−(1+sin(202kπ))=1−(1+sin(10kπ))=−sin(10kπ). -
Qk+20=21−sin(10(k+20)π)=21−sin(10kπ+2π)=21−sin(10kπ).
Thus, Qk=Qk+20.
Now we evaluate the given options:
(A) a1+a3=a21+a23
P1Q1+P3Q3=P21Q1+P23Q3
(P1−P21)Q1+(P3−P23)Q3=0
(2cos(20π)+2sin(20π))Q1+(2cos(203π)+2sin(203π))Q3=0.
This simplifies to (cos(20π)+sin(20π))Q1+(cos(203π)+sin(203π))Q3=0.
Substituting Q1=21−sin(18∘)=43−5 and Q3=21−sin(54∘)=41−5, and using cos(20kπ)+sin(20kπ)=2sin(20kπ+4π), the equation becomes:
2sin(54∘)Q1+2sin(72∘)Q3=0.
sin(54∘)(43−5)+sin(72∘)(41−5)=0.
Using exact values and simplifying, this leads to 2(5−1)−10+25(5−1)=0, which implies 2=10+25, or 4=10+25, which is false. So (A) is incorrect.
(B) a1+a3+a21+a23=0
(P1+P21)Q1+(P3+P23)Q3=0
2Q1+2Q3=0⟹Q1+Q3=0.
Q1+Q3=(21−sin(10π))+(21−sin(103π))=1−(sin(18∘)+sin(54∘)).
We know sin(18∘)=45−1 and sin(54∘)=45+1.
So, sin(18∘)+sin(54∘)=45−1+45+1=425=25.
Thus, Q1+Q3=1−25=0. So (B) is incorrect.
(C) a1a3=a21a23
(P1Q1)(P3Q3)=(P21Q1)(P23Q3).
Since Q1=0 and Q3=0, we can divide by Q1Q3, giving P1P3=P21P23.
Let A=cos(20π)+sin(20π) and B=cos(203π)+sin(203π).
Then (1+A)(1+B)=(1−A)(1−B), which simplifies to 1+A+B+AB=1−A−B+AB, so 2(A+B)=0⟹A+B=0.
A+B=(cos(20π)+sin(20π))+(cos(203π)+sin(203π)).
Since 20π and 203π are in the first quadrant, all terms are positive, so their sum cannot be zero. So (C) is incorrect.
(D) a1a3a21a23=2561
a1a3a21a23=(P1Q1)(P3Q3)(P21Q1)(P23Q3)=(P1P21)(P3P23)(Q1Q3)2.
We found P1P21=−sin(10π) and P3P23=−sin(103π).
So, a1a3a21a23=(−sin(10π))(−sin(103π))(Q1Q3)2=sin(10π)sin(103π)(Q1Q3)2.
sin(10π)sin(103π)=(45−1)(45+1)=165−1=164=41.
Q1Q3=(21−sin(10π))(21−sin(103π))=41−21(sin(10π)+sin(103π))+sin(10π)sin(103π)
=41−21(25)+41=41−45+41=42−5.
Therefore, a1a3a21a23=41(42−5)2=4116(2−5)2=41164−45+5=41169−45=649−45.
This is not equal to 2561. So (D) is incorrect.
Based on the rigorous mathematical analysis, none of the provided options are correct.