Solveeit Logo

Question

Question: If $a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = 1432$ $a_7x_1 + a_6x_2 + a_5x_3 + a_8x_4 = 2341$ $a_{11}x_...

If a1x1+a2x2+a3x3+a4x4=1432a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = 1432

a7x1+a6x2+a5x3+a8x4=2341a_7x_1 + a_6x_2 + a_5x_3 + a_8x_4 = 2341

a11x1+a12x2+a13x3+a10x4=3412a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{10}x_4 = 3412

a17x1+a16x2+a15x3+a14x4=4321a_{17}x_1 + a_{16}x_2 + a_{15}x_3 + a_{14}x_4 = 4321

where a1,a2,a3........a17a_1, a_2, a_3 ........ a_{17} are in A.P. with a1+a2+a3........a17=4369a_1 + a_2 + a_3 ........ a_{17} = 4369.

Then the value of [x1+x2+x3+x4][x_1 + x_2 + x_3 + x_4] is (where [.] denotes G.I.F.)

A

11

B

10

C

13

D

9

Answer

11

Explanation

Solution

Let the given system of equations be:

  1. a1x1+a2x2+a3x3+a4x4=1432a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = 1432

  2. a7x1+a6x2+a5x3+a8x4=2341a_7x_1 + a_6x_2 + a_5x_3 + a_8x_4 = 2341

  3. a11x1+a12x2+a13x3+a10x4=3412a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{10}x_4 = 3412

  4. a17x1+a16x2+a15x3+a14x4=4321a_{17}x_1 + a_{16}x_2 + a_{15}x_3 + a_{14}x_4 = 4321

The terms a1,a2,,a17a_1, a_2, \dots, a_{17} are in an arithmetic progression (A.P.). Let the first term be AA and the common difference be DD. Then an=A+(n1)Da_n = A + (n-1)D.

The sum of the first 17 terms is given as S17=a1+a2++a17=4369S_{17} = a_1 + a_2 + \dots + a_{17} = 4369.

The sum of an A.P. is Sn=n2(a1+an)S_n = \frac{n}{2}(a_1 + a_n).

For n=17n=17, S17=172(a1+a17)=4369S_{17} = \frac{17}{2}(a_1 + a_{17}) = 4369.

a1=Aa_1 = A, a17=A+16Da_{17} = A + 16D.

S17=172(A+A+16D)=172(2A+16D)=17(A+8D)S_{17} = \frac{17}{2}(A + A + 16D) = \frac{17}{2}(2A + 16D) = 17(A + 8D).

We have 17(A+8D)=436917(A + 8D) = 4369.

A+8D=436917=257A + 8D = \frac{4369}{17} = 257.

Note that a9=A+(91)D=A+8Da_9 = A + (9-1)D = A + 8D, so a9=257a_9 = 257.

We want to find the value of [x1+x2+x3+x4][x_1 + x_2 + x_3 + x_4]. Let S=x1+x2+x3+x4S = x_1 + x_2 + x_3 + x_4.

Let's sum the four given equations:

(a1x1+a2x2+a3x3+a4x4)+(a7x1+a6x2+a5x3+a8x4)+(a11x1+a12x2+a13x3+a10x4)+(a17x1+a16x2+a15x3+a14x4)=1432+2341+3412+4321(a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4) + (a_7x_1 + a_6x_2 + a_5x_3 + a_8x_4) + (a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{10}x_4) + (a_{17}x_1 + a_{16}x_2 + a_{15}x_3 + a_{14}x_4) = 1432 + 2341 + 3412 + 4321.

Sum of the right-hand sides: 1432+2341+3412+4321=115061432 + 2341 + 3412 + 4321 = 11506.

Rearranging the terms on the left-hand side based on xix_i:

(a1+a7+a11+a17)x1+(a2+a6+a12+a16)x2+(a3+a5+a13+a15)x3+(a4+a8+a10+a14)x4=11506(a_1 + a_7 + a_{11} + a_{17})x_1 + (a_2 + a_6 + a_{12} + a_{16})x_2 + (a_3 + a_5 + a_{13} + a_{15})x_3 + (a_4 + a_8 + a_{10} + a_{14})x_4 = 11506.

Let's evaluate the sum of coefficients for each xix_i:

Coefficient of x1x_1: C1=a1+a7+a11+a17C_1 = a_1 + a_7 + a_{11} + a_{17}

C1=(A)+(A+6D)+(A+10D)+(A+16D)=4A+(0+6+10+16)D=4A+32D=4(A+8D)C_1 = (A) + (A+6D) + (A+10D) + (A+16D) = 4A + (0+6+10+16)D = 4A + 32D = 4(A + 8D).

Since A+8D=257A + 8D = 257, C1=4×257=1028C_1 = 4 \times 257 = 1028.

Coefficient of x2x_2: C2=a2+a6+a12+a16C_2 = a_2 + a_6 + a_{12} + a_{16}

C2=(A+D)+(A+5D)+(A+11D)+(A+15D)=4A+(1+5+11+15)D=4A+32D=4(A+8D)C_2 = (A+D) + (A+5D) + (A+11D) + (A+15D) = 4A + (1+5+11+15)D = 4A + 32D = 4(A + 8D).

C2=4×257=1028C_2 = 4 \times 257 = 1028.

Coefficient of x3x_3: C3=a3+a5+a13+a15C_3 = a_3 + a_5 + a_{13} + a_{15}

C3=(A+2D)+(A+4D)+(A+12D)+(A+14D)=4A+(2+4+12+14)D=4A+32D=4(A+8D)C_3 = (A+2D) + (A+4D) + (A+12D) + (A+14D) = 4A + (2+4+12+14)D = 4A + 32D = 4(A + 8D).

C3=4×257=1028C_3 = 4 \times 257 = 1028.

Coefficient of x4x_4: C4=a4+a8+a10+a14C_4 = a_4 + a_8 + a_{10} + a_{14}

C4=(A+3D)+(A+7D)+(A+9D)+(A+13D)=4A+(3+7+9+13)D=4A+32D=4(A+8D)C_4 = (A+3D) + (A+7D) + (A+9D) + (A+13D) = 4A + (3+7+9+13)D = 4A + 32D = 4(A + 8D).

C4=4×257=1028C_4 = 4 \times 257 = 1028.

The sum equation becomes:

1028x1+1028x2+1028x3+1028x4=115061028x_1 + 1028x_2 + 1028x_3 + 1028x_4 = 11506.

1028(x1+x2+x3+x4)=115061028(x_1 + x_2 + x_3 + x_4) = 11506.

x1+x2+x3+x4=115061028x_1 + x_2 + x_3 + x_4 = \frac{11506}{1028}.

Now, we perform the division:

115061028=5753514\frac{11506}{1028} = \frac{5753}{514}.

Let's divide 5753 by 514:

5753=5140+613=514×10+6135753 = 5140 + 613 = 514 \times 10 + 613.

So, 5753514=10+613514\frac{5753}{514} = 10 + \frac{613}{514}.

The fraction 613514\frac{613}{514} is greater than 1.

613514=514+99514=1+99514\frac{613}{514} = \frac{514 + 99}{514} = 1 + \frac{99}{514}.

So, x1+x2+x3+x4=10+1+99514=11+99514x_1 + x_2 + x_3 + x_4 = 10 + 1 + \frac{99}{514} = 11 + \frac{99}{514}.

We need to find the value of [x1+x2+x3+x4][x_1 + x_2 + x_3 + x_4].

[x1+x2+x3+x4]=[11+99514][x_1 + x_2 + x_3 + x_4] = [11 + \frac{99}{514}].

Since 0<99514<10 < \frac{99}{514} < 1, the greatest integer less than or equal to 11+9951411 + \frac{99}{514} is 11.

The value of [x1+x2+x3+x4][x_1 + x_2 + x_3 + x_4] is 11.