Question
Question: If $a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = 1432$ $a_7x_1 + a_6x_2 + a_5x_3 + a_8x_4 = 2341$ $a_{11}x_...
If a1x1+a2x2+a3x3+a4x4=1432
a7x1+a6x2+a5x3+a8x4=2341
a11x1+a12x2+a13x3+a10x4=3412
a17x1+a16x2+a15x3+a14x4=4321
where a1,a2,a3........a17 are in A.P. with a1+a2+a3........a17=4369.
Then the value of [x1+x2+x3+x4] is (where [.] denotes G.I.F.)

11
10
13
9
11
Solution
Let the given system of equations be:
-
a1x1+a2x2+a3x3+a4x4=1432
-
a7x1+a6x2+a5x3+a8x4=2341
-
a11x1+a12x2+a13x3+a10x4=3412
-
a17x1+a16x2+a15x3+a14x4=4321
The terms a1,a2,…,a17 are in an arithmetic progression (A.P.). Let the first term be A and the common difference be D. Then an=A+(n−1)D.
The sum of the first 17 terms is given as S17=a1+a2+⋯+a17=4369.
The sum of an A.P. is Sn=2n(a1+an).
For n=17, S17=217(a1+a17)=4369.
a1=A, a17=A+16D.
S17=217(A+A+16D)=217(2A+16D)=17(A+8D).
We have 17(A+8D)=4369.
A+8D=174369=257.
Note that a9=A+(9−1)D=A+8D, so a9=257.
We want to find the value of [x1+x2+x3+x4]. Let S=x1+x2+x3+x4.
Let's sum the four given equations:
(a1x1+a2x2+a3x3+a4x4)+(a7x1+a6x2+a5x3+a8x4)+(a11x1+a12x2+a13x3+a10x4)+(a17x1+a16x2+a15x3+a14x4)=1432+2341+3412+4321.
Sum of the right-hand sides: 1432+2341+3412+4321=11506.
Rearranging the terms on the left-hand side based on xi:
(a1+a7+a11+a17)x1+(a2+a6+a12+a16)x2+(a3+a5+a13+a15)x3+(a4+a8+a10+a14)x4=11506.
Let's evaluate the sum of coefficients for each xi:
Coefficient of x1: C1=a1+a7+a11+a17
C1=(A)+(A+6D)+(A+10D)+(A+16D)=4A+(0+6+10+16)D=4A+32D=4(A+8D).
Since A+8D=257, C1=4×257=1028.
Coefficient of x2: C2=a2+a6+a12+a16
C2=(A+D)+(A+5D)+(A+11D)+(A+15D)=4A+(1+5+11+15)D=4A+32D=4(A+8D).
C2=4×257=1028.
Coefficient of x3: C3=a3+a5+a13+a15
C3=(A+2D)+(A+4D)+(A+12D)+(A+14D)=4A+(2+4+12+14)D=4A+32D=4(A+8D).
C3=4×257=1028.
Coefficient of x4: C4=a4+a8+a10+a14
C4=(A+3D)+(A+7D)+(A+9D)+(A+13D)=4A+(3+7+9+13)D=4A+32D=4(A+8D).
C4=4×257=1028.
The sum equation becomes:
1028x1+1028x2+1028x3+1028x4=11506.
1028(x1+x2+x3+x4)=11506.
x1+x2+x3+x4=102811506.
Now, we perform the division:
102811506=5145753.
Let's divide 5753 by 514:
5753=5140+613=514×10+613.
So, 5145753=10+514613.
The fraction 514613 is greater than 1.
514613=514514+99=1+51499.
So, x1+x2+x3+x4=10+1+51499=11+51499.
We need to find the value of [x1+x2+x3+x4].
[x1+x2+x3+x4]=[11+51499].
Since 0<51499<1, the greatest integer less than or equal to 11+51499 is 11.
The value of [x1+x2+x3+x4] is 11.