Solveeit Logo

Question

Question: If \(a_{1}x + b_{1}y + c_{1}z = 0,a_{2}x + b_{2}y + c_{2}z = 0\) \(a_{3}x + b_{3}y + c_{3}z = 0\) an...

If a1x+b1y+c1z=0,a2x+b2y+c2z=0a_{1}x + b_{1}y + c_{1}z = 0,a_{2}x + b_{2}y + c_{2}z = 0 a3x+b3y+c3z=0a_{3}x + b_{3}y + c_{3}z = 0 and a1b1c1a2b2c2a3b3c3=0,\left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{matrix} \right| = 0, then the given system has.

A

One trivial and one non-trivial solution

B

No solution

C

One solution

D

Infinite solution

Answer

Infinite solution

Explanation

Solution

It is based on fundamental concept.