Solveeit Logo

Question

Question: If \(A_{1},B_{1},C_{1}\).... are respectively the co-factors of the elements \(a_{1},b_{1},c_{1}\),....

If A1,B1,C1A_{1},B_{1},C_{1}.... are respectively the co-factors of the elements a1,b1,c1a_{1},b_{1},c_{1},...... of the determinant.Δ=a1b1c1a2b2c2a3b3c3\Delta = \left| \begin{matrix} a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{matrix} \right|, then B2C2B3C3=\left| \begin{matrix} B_{2} & C_{2} \\ B_{3} & C_{3} \end{matrix} \right| =

A

a1Δa_{1}\Delta

B

a1a3Δa_{1}a_{3}\Delta

C

(a1+b1)Δ(a_{1} + b_{1})\Delta

D

None of these

Answer

a1Δa_{1}\Delta

Explanation

Solution

B2=a1c1a3c3=a1c3c1a3B_{2} = \left| \begin{matrix} a_{1} & c_{1} \\ a_{3} & c_{3} \end{matrix} \right| = a_{1}c_{3} - c_{1}a_{3}

a_{1} & b_{1} \\ a_{3} & b_{3} \end{matrix} \right| = - (a_{1}b_{3} - a_{3}b_{1})$$ $$B_{3} = - \left| \begin{matrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{matrix} \right| = - (a_{1}c_{2} - a_{2}c_{1})$$ $$C_{3} = \left| \begin{matrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{matrix} \right| = a_{1}b_{2} - a_{2}b_{1}$$ $$\left| \begin{matrix} B_{2} & C_{2} \\ B_{3} & C_{3} \end{matrix} \right| = \left| \begin{matrix} a_{1}c_{3} - a_{3}c_{1} & - (a_{1}b_{3} - a_{3}b_{1}) \\ - (a_{1}c_{2} - a_{2}c_{1}) & a_{1}b_{2} - a_{2}b_{1} \end{matrix} \right|$$ $$= \left| \begin{matrix} a_{1}c_{3} & - a_{1}b_{3} \\ - a_{1}c_{2} & a_{1}b_{2} \end{matrix} \right| + \left| \begin{matrix} a_{1}c_{3} & a_{3}b_{1} \\ - a_{1}c_{2} & - a_{2}b_{1} \end{matrix} \right|$$ $+ \left| \begin{matrix} - a_{3}c_{1} & - a_{1}b_{3} \\ a_{2}c_{1} & a_{1}b_{2} \end{matrix} \right| + \left| \begin{matrix} - a_{3}c_{1} & a_{3}b_{1} \\ a_{2}c_{1} & - a_{2}b_{1} \end{matrix} \right|$ $$= a_{1}^{2}(b_{2}c_{3} - b_{3}c_{2}) + a_{1}b_{1}( - c_{3}a_{2} + a_{3}c_{2})$$ $+ a_{1}c_{1}( - a_{3}b_{2} + a_{2}b_{3}) + c_{1}b_{1}(a_{3}a_{2} - a_{2}a_{3}) = a_{1}\Delta$.