Question
Question: If \(a_{1},a_{2},......,a_{n + 1}\) are in A.P., then \(\frac{1}{a_{1}a_{2}} + \frac{1}{a_{2}a_{3}} ...
If a1,a2,......,an+1 are in A.P., then a1a21+a2a31+.....+anan+11 is
A
a1an+1n−1
B
a1an+11
C
a1an+1n+1
D
a1an+1n−1
Answer
a1an+1n−1
Explanation
Solution
S=a1a21+a2a31+....+anan+11=(a2−a1)(a11−a21)+(a3−a2)(a21−a31)+......+(an+1−an)(an1−an+11)As a1,a2,a3,.......,an,an+1 are in A.P., i.e.
a2−a1=a3−a2=.........=an+1−an=d (say)
∴ S=d1[(a11−a21)+(a21−a31)+......+(an1−an+11)]= $$\frac{1}{d}\left\lbrack \frac{1}{a_{1}} - \frac{1}{a_{n + 1}} \right\rbrack = \frac{a_{n + 1} - a_{1}}{d.a_{1}.a_{n + 1}} = \frac{\lbrack a_{1} + (n + 1 - 1)d\rbrack - a_{1}}{d.a_{1}.a_{n + 1}}
S=da1an+1nd=a1an+1n