Question
Question: If \(a_{1},a_{2},a_{3},.......,a_{n},......\) are in G.P. then the value of the determinant \(\left|...
If a1,a2,a3,.......,an,...... are in G.P. then the value of the determinant loganlogan+3logan+6logan+1logan+4logan+7logan+2logan+5logan+8 is
A
–2
B
1
C
2
D
0
Answer
0
Explanation
Solution
∵ a1,a2,a3,.......,an,...... are in G.P.
∴an+12=an.an+2⇒2logan+1=logan+logan+2
an+42=an+3.an+5⇒2logan+4=logan+3+logan+5
an+72=an+6.an+8⇒2logan+7=logan+6+logan+8
Putting these values in the second column of the given
determinant, we get
\log a_{n} & \log a_{n} + \log a_{n + 2} & \log a_{n + 2} \\ \log a_{n + 3} & \log a_{n + 3} + \log a_{n + 5} & \log a_{n + 5} \\ \log a_{n + 6} & \log a_{n + 6} + \log a_{n + 8} & \log a_{n + 8} \end{matrix} \right| = \frac{1}{2}(0) = 0$$ a [$c_{2}$is the sum of the elements, first identical with $c_{1}$ and second with $c_{3}$]