Solveeit Logo

Question

Question: If \(a_{1},a_{2},a_{3},a_{4}\) are the coefficients of any four consecutive terms in the expansion o...

If a1,a2,a3,a4a_{1},a_{2},a_{3},a_{4} are the coefficients of any four consecutive terms in the expansion of (1+x)n(1 + x)^{n}, then a1a1+a2+a3a3+a4=\frac{a_{1}}{a_{1} + a_{2}} + \frac{a_{3}}{a_{3} + a_{4}} =

A

a2a2+a3\frac{a_{2}}{a_{2} + a_{3}}

B

12a2a2+a3\frac{1}{2}\frac{a_{2}}{a_{2} + a_{3}}

C

2a2a2+a3\frac{2a_{2}}{a_{2} + a_{3}}

D

2a3a2+a3\frac{2a_{3}}{a_{2} + a_{3}}

Answer

2a2a2+a3\frac{2a_{2}}{a_{2} + a_{3}}

Explanation

Solution

Let a1,a2,a3,a4a_{1},a_{2},a_{3},a_{4} be respectively the coefficients of (r+1)th,(r+2)th,(r+3)th,(r+4)th(r + 1)^{th},(r + 2)^{th},(r + 3)^{th},(r + 4)^{th} terms in the expansion of (1+x)n(1 + x)^{n}. Then a1=nCr,a2=nCr+1,a3=nCr+2,a4=nCr+3a_{1} =^{n} ⥂ C_{r},a_{2} =^{n}C_{r + 1},a_{3} =^{n}C_{r + 2},a_{4} =^{n} ⥂ C_{r + 3}.

Now, a1a1+a2+a3a3+a4=nCrnCr+nCr+1+nCr+2nCr+2+nCr+3\frac{a_{1}}{a_{1} + a_{2}} + \frac{a_{3}}{a_{3} + a_{4}} = \frac{n ⥂ C_{r}}{n ⥂ C_{r} +^{n} ⥂ C_{r + 1}} + \frac{nC_{r + 2}}{nC_{r + 2} +^{n} ⥂ C_{r + 3}}

=nCrn+1Cr+1+nCr+2n+1Cr+3\frac{n ⥂ C_{r}}{n + 1 ⥂ C_{r + 1}} + \frac{n ⥂ C_{r + 2}}{n + 1 ⥂ C_{r + 3}}= nCrn+1r+16munCr+nCr+2n+1r+3nCr+2\frac{n ⥂ C_{r}}{\frac{n + 1}{r + 1}\mspace{6mu}^{n}C_{r}} + \frac{nC_{r + 2}}{\frac{n + 1}{r + 3}^{n}C_{r + 2}}

= r+1n+1+r+3n+1=2(r+2)n+1\frac{r + 1}{n + 1} + \frac{r + 3}{n + 1} = \frac{2(r + 2)}{n + 1}

= 2.nCr+1n+1Cr+2=2.nCr+1nCr+1+nCr+2=2a2a2+a32.\frac{n ⥂ C_{r + 1}}{n + 1C_{r + 2}} = 2.\frac{n ⥂ C_{r + 1}}{nC_{r + 1} +^{n} ⥂ C_{r + 2}} = \frac{2a_{2}}{a_{2} + a_{3}}

Let a1,a2,a3,a4a_{1},a_{2},a_{3},a_{4} be respectively the coefficients of (r+1)th,(r+2)th,(r+3)th,(r+4)th(r + 1)^{th},(r + 2)^{th},(r + 3)^{th},(r + 4)^{th} terms in the expansion of (1+x)n(1 + x)^{n}. Then a1=nCr,a2=nCr+1,a3=nCr+2,a4=nCr+3a_{1} =^{n} ⥂ C_{r},a_{2} =^{n}C_{r + 1},a_{3} =^{n}C_{r + 2},a_{4} =^{n} ⥂ C_{r + 3}.

Now, a1a1+a2+a3a3+a4=nCrnCr+nCr+1+nCr+2nCr+2+nCr+3\frac{a_{1}}{a_{1} + a_{2}} + \frac{a_{3}}{a_{3} + a_{4}} = \frac{n ⥂ C_{r}}{n ⥂ C_{r} +^{n} ⥂ C_{r + 1}} + \frac{nC_{r + 2}}{nC_{r + 2} +^{n} ⥂ C_{r + 3}}

=nCrn+1Cr+1+nCr+2n+1Cr+3\frac{n ⥂ C_{r}}{n + 1 ⥂ C_{r + 1}} + \frac{n ⥂ C_{r + 2}}{n + 1 ⥂ C_{r + 3}}= nCrn+1r+16munCr+nCr+2n+1r+3nCr+2\frac{n ⥂ C_{r}}{\frac{n + 1}{r + 1}\mspace{6mu}^{n}C_{r}} + \frac{nC_{r + 2}}{\frac{n + 1}{r + 3}^{n}C_{r + 2}}

=r+1n+1+r+3n+1=2(r+2)n+1\frac{r + 1}{n + 1} + \frac{r + 3}{n + 1} = \frac{2(r + 2)}{n + 1}= 2.nCr+1n+1Cr+2=2.nCr+1nCr+1+nCr+2=2a2a2+a32.\frac{n ⥂ C_{r + 1}}{n + 1C_{r + 2}} = 2.\frac{n ⥂ C_{r + 1}}{nC_{r + 1} +^{n} ⥂ C_{r + 2}} = \frac{2a_{2}}{a_{2} + a_{3}}