Question
Question: If \(a_{1},a_{2},a_{3},.....,a_{24}\) are in arithmetic progression and \(a_{1} + a_{5} + a_{10} + a...
If a1,a2,a3,.....,a24 are in arithmetic progression and a1+a5+a10+a15+a20+a24=225, then a1+a2+a3+.....+a23+a24=
A
909
B
75
C
750
D
900
Answer
900
Explanation
Solution
a1+a5+a10+a15+a20+a24=225
⇒ (a1+a24)+(a5+a20)+(a10+a15)=225
⇒ 3(a1+a24)=225 ⇒ a1+a24=75
(∵ In an A.P. the sum of the terms equidistant from the beginning and the end is same and is equal to the sum of first and last term)
a1+a2+.....+a24=224(a1+a24)=12×75=900