Solveeit Logo

Question

Question: If \(a_{1},a_{2},a_{3},.....,a_{24}\) are in arithmetic progression and \(a_{1} + a_{5} + a_{10} + a...

If a1,a2,a3,.....,a24a_{1},a_{2},a_{3},.....,a_{24} are in arithmetic progression and a1+a5+a10+a15+a20+a24=225a_{1} + a_{5} + a_{10} + a_{15} + a_{20} + a_{24} = 225, then a1+a2+a3+.....+a23+a24=a_{1} + a_{2} + a_{3} + ..... + a_{23} + a_{24} =

A

909

B

75

C

750

D

900

Answer

900

Explanation

Solution

a1+a5+a10+a15+a20+a24=225a_{1} + a_{5} + a_{10} + a_{15} + a_{20} + a_{24} = 225

(a1+a24)+(a5+a20)+(a10+a15)=225(a_{1} + a_{24}) + (a_{5} + a_{20}) + (a_{10} + a_{15}) = 225

3(a1+a24)=2253(a_{1} + a_{24}) = 225a1+a24=75a_{1} + a_{24} = 75

(∵ In an A.P. the sum of the terms equidistant from the beginning and the end is same and is equal to the sum of first and last term)

a1+a2+.....+a24=242(a1+a24)=12×75=900a_{1} + a_{2} + ..... + a_{24} = \frac{24}{2}(a_{1} + a_{24}) = 12 \times 75 = 900