Question
Question: If $a_1, a_2, a_3, \dots a_{2n}$ are in A.P. with common difference d, then $\tan^{-1}\left(\frac{2d...
If a1,a2,a3,…a2n are in A.P. with common difference d, then tan−1(1+a1a32d)+tan−1(1+a3a52d)+tan−1(1+a5a72d)+⋯+tan−1(1+a2n−3.a2n−12d) is equal to

A
tan−1(a2n−1)−tan−1(a3)
B
tan−1(a2n)−tan−1(a1)
C
tan−1(a1)−tan−1(a2n−1)
D
tan−1(a2n−1)−tan−1a1
Answer
tan−1(a2n−1)−tan−1(a1)
Explanation
Solution
Given an A.P.:
ak=a1+(k−1)dFor any two odd-indexed terms,
a2i+1−a2i−1=[a1+2id]−[a1+(2i−2)d]=2d.Using the formula for the difference of inverse tangents:
tan−1(x)−tan−1(y)=tan−1(1+xyx−y).Thus,
tan−1(a2i+1)−tan−1(a2i−1)=tan−1(1+a2i−1a2i+12d).The sum given is:
i=1∑n−1tan−1(1+a2i−1a2i+12d).Replacing each term, the sum becomes telescopic:
[tan−1(a3)−tan−1(a1)]+[tan−1(a5)−tan−1(a3)]+⋯+[tan−1(a2n−1)−tan−1(a2n−3)].Telescoping gives:
tan−1(a2n−1)−tan−1(a1).