Solveeit Logo

Question

Question: If $a_1, a_2, a_3, \dots a_{2n}$ are in A.P. with common difference d, then $\tan^{-1}\left(\frac{2d...

If a1,a2,a3,a2na_1, a_2, a_3, \dots a_{2n} are in A.P. with common difference d, then tan1(2d1+a1a3)+tan1(2d1+a3a5)+tan1(2d1+a5a7)++tan1(2d1+a2n3.a2n1)\tan^{-1}\left(\frac{2d}{1+a_1a_3}\right) + \tan^{-1}\left(\frac{2d}{1+a_3a_5}\right) + \tan^{-1}\left(\frac{2d}{1+a_5a_7}\right) + \dots + \tan^{-1}\left(\frac{2d}{1+a_{2n-3}.a_{2n-1}}\right) is equal to

A

tan1(a2n1)tan1(a3)\tan^{-1}(a_{2n-1}) - \tan^{-1}(a_3)

B

tan1(a2n)tan1(a1)\tan^{-1}(a_{2n}) - \tan^{-1}(a_1)

C

tan1(a1)tan1(a2n1)\tan^{-1}(a_1) - \tan^{-1}(a_{2n-1})

D

tan1(a2n1)tan1a1\tan^{-1}(a_{2n-1}) - \tan^{-1}a_1

Answer

tan1(a2n1)tan1(a1)\tan^{-1}(a_{2n-1}) - \tan^{-1}(a_1)

Explanation

Solution

Given an A.P.:

ak=a1+(k1)da_k = a_1 + (k-1)d

For any two odd-indexed terms,

a2i+1a2i1=[a1+2id][a1+(2i2)d]=2d.a_{2i+1} - a_{2i-1} = [a_1 + 2id] - [a_1 + (2i-2)d] = 2d.

Using the formula for the difference of inverse tangents:

tan1(x)tan1(y)=tan1(xy1+xy).\tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x-y}{1+xy}\right).

Thus,

tan1(a2i+1)tan1(a2i1)=tan1(2d1+a2i1a2i+1).\tan^{-1}(a_{2i+1}) - \tan^{-1}(a_{2i-1}) = \tan^{-1}\left(\frac{2d}{1+a_{2i-1}a_{2i+1}}\right).

The sum given is:

i=1n1tan1(2d1+a2i1a2i+1).\sum_{i=1}^{n-1} \tan^{-1}\left(\frac{2d}{1+a_{2i-1}a_{2i+1}}\right).

Replacing each term, the sum becomes telescopic:

[tan1(a3)tan1(a1)]+[tan1(a5)tan1(a3)]++[tan1(a2n1)tan1(a2n3)].[\tan^{-1}(a_3)-\tan^{-1}(a_1)] + [\tan^{-1}(a_5)-\tan^{-1}(a_3)] + \cdots + [\tan^{-1}(a_{2n-1})-\tan^{-1}(a_{2n-3})].

Telescoping gives:

tan1(a2n1)tan1(a1).\tan^{-1}(a_{2n-1}) - \tan^{-1}(a_1).