Solveeit Logo

Question

Question: If $a_1, a_2, a_3, \dots, a_{12}$ are in A.P. and $\Delta_1 = \begin{vmatrix} a_1 a_5 & a_1 & a_2 \...

If a1,a2,a3,,a12a_1, a_2, a_3, \dots, a_{12} are in A.P. and

Δ1=a1a5a1a2a2a6a2a3a3a7a3a4,Δ2=a2a10a2a3a3a11a3a4a4a12a4a5\Delta_1 = \begin{vmatrix} a_1 a_5 & a_1 & a_2 \\ a_2 a_6 & a_2 & a_3 \\ a_3 a_7 & a_3 & a_4 \end{vmatrix}, \Delta_2 = \begin{vmatrix} a_2 a_{10} & a_2 & a_3 \\ a_3 a_{11} & a_3 & a_4 \\ a_4 a_{12} & a_4 & a_5 \end{vmatrix}

then Δ1:Δ2\Delta_1 : \Delta_2 is equal to __

Answer

1:1

Explanation

Solution

The elements a1,a2,a3,,a12a_1, a_2, a_3, \dots, a_{12} are in A.P. Let the common difference be dd. Thus, an+1an=da_{n+1} - a_n = d for any nn.

Let's analyze the determinant Δ1\Delta_1: Δ1=a1a5a1a2a2a6a2a3a3a7a3a4\Delta_1 = \begin{vmatrix} a_1 a_5 & a_1 & a_2 \\ a_2 a_6 & a_2 & a_3 \\ a_3 a_7 & a_3 & a_4 \end{vmatrix}

Perform row operations to simplify the determinant:

  1. R2R2R1R_2 \to R_2 - R_1
  2. R3R3R2R_3 \to R_3 - R_2

The new determinant is: Δ1=a1a5a1a2a2a6a1a5a2a1a3a2a3a7a2a6a3a2a4a3\Delta_1 = \begin{vmatrix} a_1 a_5 & a_1 & a_2 \\ a_2 a_6 - a_1 a_5 & a_2 - a_1 & a_3 - a_2 \\ a_3 a_7 - a_2 a_6 & a_3 - a_2 & a_4 - a_3 \end{vmatrix}

Since ana_n are in A.P., we have a2a1=da_2 - a_1 = d, a3a2=da_3 - a_2 = d, a4a3=da_4 - a_3 = d. Δ1=a1a5a1a2a2a6a1a5dda3a7a2a6dd\Delta_1 = \begin{vmatrix} a_1 a_5 & a_1 & a_2 \\ a_2 a_6 - a_1 a_5 & d & d \\ a_3 a_7 - a_2 a_6 & d & d \end{vmatrix}

Now, perform another row operation: 3. R3R3R2R_3 \to R_3 - R_2

Δ1=a1a5a1a2a2a6a1a5dd(a3a7a2a6)(a2a6a1a5)00\Delta_1 = \begin{vmatrix} a_1 a_5 & a_1 & a_2 \\ a_2 a_6 - a_1 a_5 & d & d \\ (a_3 a_7 - a_2 a_6) - (a_2 a_6 - a_1 a_5) & 0 & 0 \end{vmatrix}

Let X=(a3a7a2a6)(a2a6a1a5)X = (a_3 a_7 - a_2 a_6) - (a_2 a_6 - a_1 a_5). The determinant simplifies to: Δ1=Xa1a2dd\Delta_1 = X \begin{vmatrix} a_1 & a_2 \\ d & d \end{vmatrix} Δ1=X(a1da2d)=Xd(a1a2)=Xd(d)=Xd2\Delta_1 = X (a_1 d - a_2 d) = X d (a_1 - a_2) = X d (-d) = -X d^2

Now we need to calculate XX. X=a3a72a2a6+a1a5X = a_3 a_7 - 2 a_2 a_6 + a_1 a_5. Let an=a+(n1)da_n = a + (n-1)d, where aa is the first term. a1=aa_1 = a a2=a+da_2 = a+d a3=a+2da_3 = a+2d a5=a+4da_5 = a+4d a6=a+5da_6 = a+5d a7=a+6da_7 = a+6d

Substitute these into the expression for XX: X=(a+2d)(a+6d)2(a+d)(a+5d)+a(a+4d)X = (a+2d)(a+6d) - 2(a+d)(a+5d) + a(a+4d) X=(a2+8ad+12d2)2(a2+6ad+5d2)+(a2+4ad)X = (a^2 + 8ad + 12d^2) - 2(a^2 + 6ad + 5d^2) + (a^2 + 4ad) X=a2+8ad+12d22a212ad10d2+a2+4adX = a^2 + 8ad + 12d^2 - 2a^2 - 12ad - 10d^2 + a^2 + 4ad

Combine like terms: X=(12+1)a2+(812+4)ad+(1210)d2X = (1 - 2 + 1)a^2 + (8 - 12 + 4)ad + (12 - 10)d^2 X=0a2+0ad+2d2X = 0a^2 + 0ad + 2d^2 X=2d2X = 2d^2.

So, Δ1=(2d2)d2=2d4\Delta_1 = -(2d^2)d^2 = -2d^4.

Now, let's analyze Δ2\Delta_2: Δ2=a2a10a2a3a3a11a3a4a4a12a4a5\Delta_2 = \begin{vmatrix} a_2 a_{10} & a_2 & a_3 \\ a_3 a_{11} & a_3 & a_4 \\ a_4 a_{12} & a_4 & a_5 \end{vmatrix}

This determinant has the same structure as Δ1\Delta_1. The indices are just shifted. Applying the same row operations as for Δ1\Delta_1:

  1. R2R2R1R_2 \to R_2 - R_1
  2. R3R3R2R_3 \to R_3 - R_2

Δ2=a2a10a2a3a3a11a2a10dda4a12a3a11dd\Delta_2 = \begin{vmatrix} a_2 a_{10} & a_2 & a_3 \\ a_3 a_{11} - a_2 a_{10} & d & d \\ a_4 a_{12} - a_3 a_{11} & d & d \end{vmatrix}

Now, perform R3R3R2R_3 \to R_3 - R_2: Δ2=a2a10a2a3a3a11a2a10dd(a4a12a3a11)(a3a11a2a10)00\Delta_2 = \begin{vmatrix} a_2 a_{10} & a_2 & a_3 \\ a_3 a_{11} - a_2 a_{10} & d & d \\ (a_4 a_{12} - a_3 a_{11}) - (a_3 a_{11} - a_2 a_{10}) & 0 & 0 \end{vmatrix}

Let Y=(a4a12a3a11)(a3a11a2a10)Y = (a_4 a_{12} - a_3 a_{11}) - (a_3 a_{11} - a_2 a_{10}). The determinant simplifies to: Δ2=Ya2a3dd\Delta_2 = Y \begin{vmatrix} a_2 & a_3 \\ d & d \end{vmatrix} Δ2=Y(a2da3d)=Yd(a2a3)=Yd(d)=Yd2\Delta_2 = Y (a_2 d - a_3 d) = Y d (a_2 - a_3) = Y d (-d) = -Y d^2

Now we need to calculate YY. Y=a4a122a3a11+a2a10Y = a_4 a_{12} - 2 a_3 a_{11} + a_2 a_{10}. Substitute an=a+(n1)da_n = a + (n-1)d: a2=a+da_2 = a+d a3=a+2da_3 = a+2d a4=a+3da_4 = a+3d a10=a+9da_{10} = a+9d a11=a+10da_{11} = a+10d a12=a+11da_{12} = a+11d

Substitute these into the expression for YY: Y=(a+3d)(a+11d)2(a+2d)(a+10d)+(a+d)(a+9d)Y = (a+3d)(a+11d) - 2(a+2d)(a+10d) + (a+d)(a+9d) Y=(a2+14ad+33d2)2(a2+12ad+20d2)+(a2+10ad+9d2)Y = (a^2 + 14ad + 33d^2) - 2(a^2 + 12ad + 20d^2) + (a^2 + 10ad + 9d^2) Y=a2+14ad+33d22a224ad40d2+a2+10ad+9d2Y = a^2 + 14ad + 33d^2 - 2a^2 - 24ad - 40d^2 + a^2 + 10ad + 9d^2

Combine like terms: Y=(12+1)a2+(1424+10)ad+(3340+9)d2Y = (1 - 2 + 1)a^2 + (14 - 24 + 10)ad + (33 - 40 + 9)d^2 Y=0a2+0ad+2d2Y = 0a^2 + 0ad + 2d^2 Y=2d2Y = 2d^2.

So, Δ2=(2d2)d2=2d4\Delta_2 = -(2d^2)d^2 = -2d^4.

Finally, we need to find the ratio Δ1:Δ2\Delta_1 : \Delta_2: Δ1:Δ2=(2d4):(2d4)=1:1\Delta_1 : \Delta_2 = (-2d^4) : (-2d^4) = 1 : 1

The final answer is 1:1\boxed{1:1}.

Explanation of the solution:

  1. Simplify Determinants using Row Operations: Both determinants Δ1\Delta_1 and Δ2\Delta_2 have a similar structure. By applying row operations R2R2R1R_2 \to R_2 - R_1 and then R3R3R2R_3 \to R_3 - R_2, two elements in the third row become zero. This reduces the determinant to a product of one element from the first column of the modified matrix and a 2×22 \times 2 minor.
  2. Utilize A.P. Properties: The differences an+1an=da_{n+1} - a_n = d are used directly in the row operations, simplifying the second and third columns. The 2×22 \times 2 minor that results is of the form aiai+1dd\begin{vmatrix} a_i & a_{i+1} \\ d & d \end{vmatrix}, which evaluates to d(aiai+1)=d(d)=d2d(a_i - a_{i+1}) = d(-d) = -d^2.
  3. Calculate the Remaining Term: The non-zero element in the third row of the modified determinant is a second-order difference of terms like anan+ka_n a_{n+k}. For Δ1\Delta_1, this term is X=a3a72a2a6+a1a5X = a_3 a_7 - 2 a_2 a_6 + a_1 a_5. For Δ2\Delta_2, it is Y=a4a122a3a11+a2a10Y = a_4 a_{12} - 2 a_3 a_{11} + a_2 a_{10}.
  4. Evaluate Second Differences: Since ana_n is an A.P., an=a+(n1)da_n = a+(n-1)d. A product of two terms from an A.P., like anan+ka_n a_{n+k}, is a quadratic function of nn. The second difference of a quadratic Pn2+Qn+RPn^2+Qn+R is 2P2P. In our case, the coefficient of n2n^2 in anan+ka_n a_{n+k} is d2d^2. Thus, both XX and YY evaluate to 2d22d^2.
  5. Calculate Determinants: Both Δ1\Delta_1 and Δ2\Delta_2 simplify to (2d2)d2=2d4-(2d^2)d^2 = -2d^4.
  6. Find the Ratio: The ratio Δ1:Δ2\Delta_1 : \Delta_2 is therefore (2d4):(2d4)=1:1(-2d^4) : (-2d^4) = 1:1.