Solveeit Logo

Question

Question: If $a_1, a_2, a_3, .... a_n$ are in A.P. where $a_i > 0$ for all i, then $\frac{1}{\sqrt{a_1} + \sqr...

If a1,a2,a3,....ana_1, a_2, a_3, .... a_n are in A.P. where ai>0a_i > 0 for all i, then 1a1+a2+1a2+a3++1an1+an=\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + … + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} =

A

n1a1+an\frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}

B

na1+an\frac{n}{\sqrt{a_1} + \sqrt{a_n}}

C

n+1a1+an\frac{n+1}{\sqrt{a_1} + \sqrt{a_n}}

D

None of these

Answer

n1a1+an\frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}

Explanation

Solution

Let the given sum be SS. The general term of the sum is Tk=1ak+ak+1T_k = \frac{1}{\sqrt{a_k} + \sqrt{a_{k+1}}}. We rationalize the denominator of TkT_k: Tk=1ak+ak+1×ak+1akak+1ak=ak+1akak+1akT_k = \frac{1}{\sqrt{a_k} + \sqrt{a_{k+1}}} \times \frac{\sqrt{a_{k+1}} - \sqrt{a_k}}{\sqrt{a_{k+1}} - \sqrt{a_k}} = \frac{\sqrt{a_{k+1}} - \sqrt{a_k}}{a_{k+1} - a_k} Since a1,a2,...,ana_1, a_2, ..., a_n are in Arithmetic Progression (A.P.), the common difference is d=ak+1akd = a_{k+1} - a_k for all kk. So, Tk=ak+1akdT_k = \frac{\sqrt{a_{k+1}} - \sqrt{a_k}}{d}.

The sum SS is given by: S=k=1n1Tk=k=1n1ak+1akd=1dk=1n1(ak+1ak)S = \sum_{k=1}^{n-1} T_k = \sum_{k=1}^{n-1} \frac{\sqrt{a_{k+1}} - \sqrt{a_k}}{d} = \frac{1}{d} \sum_{k=1}^{n-1} (\sqrt{a_{k+1}} - \sqrt{a_k}) This is a telescoping sum: k=1n1(ak+1ak)=(a2a1)+(a3a2)+...+(anan1)\sum_{k=1}^{n-1} (\sqrt{a_{k+1}} - \sqrt{a_k}) = (\sqrt{a_2} - \sqrt{a_1}) + (\sqrt{a_3} - \sqrt{a_2}) + ... + (\sqrt{a_n} - \sqrt{a_{n-1}}) =ana1= \sqrt{a_n} - \sqrt{a_1} Thus, S=ana1dS = \frac{\sqrt{a_n} - \sqrt{a_1}}{d}.

For an A.P., an=a1+(n1)da_n = a_1 + (n-1)d. Therefore, the common difference dd can be expressed as: d=ana1n1d = \frac{a_n - a_1}{n-1} Substitute this expression for dd into the sum SS: S=ana1ana1n1=(n1)(ana1)ana1S = \frac{\sqrt{a_n} - \sqrt{a_1}}{\frac{a_n - a_1}{n-1}} = \frac{(n-1)(\sqrt{a_n} - \sqrt{a_1})}{a_n - a_1} We can factor the denominator ana1a_n - a_1 as a difference of squares: ana1=(ana1)(an+a1)a_n - a_1 = (\sqrt{a_n} - \sqrt{a_1})(\sqrt{a_n} + \sqrt{a_1}). S=(n1)(ana1)(ana1)(an+a1)S = \frac{(n-1)(\sqrt{a_n} - \sqrt{a_1})}{(\sqrt{a_n} - \sqrt{a_1})(\sqrt{a_n} + \sqrt{a_1})} Assuming ana1\sqrt{a_n} \neq \sqrt{a_1} (i.e. d0d \neq 0), we can cancel the term (ana1)(\sqrt{a_n} - \sqrt{a_1}): S=n1an+a1S = \frac{n-1}{\sqrt{a_n} + \sqrt{a_1}} The formula also holds when d=0d=0. The condition ai>0a_i > 0 ensures that all square roots are real and positive, and the denominators are non-zero.