Solveeit Logo

Question

Question: If $a_1, a_2, a_3, a_4, a_5$ are distinct positive terms in AP having common difference d, then -...

If a1,a2,a3,a4,a5a_1, a_2, a_3, a_4, a_5 are distinct positive terms in AP having common difference d, then -

A

5a32>4d25a_3^2 > 4d^2

B

sum of all terms = 5a35a_3

C

a1+5a5,3a3,2a2+4a4a_1 + 5a_5, 3a_3, 2a_2 + 4a_4 are in A.P.

D

a1a5<a2a4a_1a_5 < a_2a_4

Answer

Options 1, 2, and 4 are true.

Explanation

Solution

Let the terms of the AP be expressed in terms of the middle term a3a_3 and common difference dd:

a1=a32d,a2=a3d,a3=a3,a4=a3+d,a5=a3+2d.\begin{aligned} a_1 &= a_3-2d,\\[1mm] a_2 &= a_3-d,\\[1mm] a_3 &= a_3,\\[1mm] a_4 &= a_3+d,\\[1mm] a_5 &= a_3+2d. \end{aligned}
  1. Option 1: 5a32>4d25a_3^2 > 4d^2
    Since all terms are positive and a1=a32d>0a_1 = a_3-2d>0 (which implies a3>2da_3>2d) we have:

    a32>4d2/(some constant)a_3^2 > 4d^2/ (some\ constant)

    More precisely, reducing gives:

    5a32>4d2a32>45d2.5a_3^2 > 4d^2 \quad \Longleftrightarrow \quad a_3^2 > \frac{4}{5}d^2.

    Since a3>2da_3 > 2d (with d>0d>0) it follows that:

    a32>4d2and hence certainly5a32>4d2.a_3^2 > 4d^2 \quad \text{and hence certainly} \quad 5a_3^2 > 4d^2.

    Thus, Option 1 is true.

  2. Option 2: Sum of all terms = 5a35a_3
    Calculate the sum:

    S=(a32d)+(a3d)+a3+(a3+d)+(a3+2d)=5a3+(2dd+d+2d)=5a3.\begin{aligned} S &= (a_3-2d)+(a_3-d)+a_3+(a_3+d)+(a_3+2d)\\[1mm] &= 5a_3 + (-2d-d+d+2d)\\[1mm] &= 5a_3. \end{aligned}

    Hence, Option 2 is true.

  3. Option 3: a1+5a5,  3a3,  2a2+4a4a_1+5a_5,\; 3a_3,\; 2a_2+4a_4 are in AP
    Evaluate each expression:

    T1=a1+5a5=(a32d)+5(a3+2d)=6a3+8d,T2=3a3,T3=2a2+4a4=2(a3d)+4(a3+d)=6a3+2d.\begin{aligned} T_1 &= a_1+5a_5 = (a_3-2d)+5(a_3+2d)=6a_3+8d,\\[1mm] T_2 &= 3a_3,\\[1mm] T_3 &= 2a_2+4a_4 = 2(a_3-d)+4(a_3+d)=6a_3+2d. \end{aligned}

    For these to be in AP, the condition is:

    2T2=T1+T3.2T_2 = T_1+T_3.

    Substitute:

    2(3a3)=6a3andT1+T3=(6a3+8d)+(6a3+2d)=12a3+10d.2(3a_3)=6a_3 \quad \text{and} \quad T_1+T_3 = (6a_3+8d)+(6a_3+2d)=12a_3+10d.

    For equality:

    6a3=12a3+10d6a3=10d,6a_3=12a_3+10d \quad \Longrightarrow \quad -6a_3=10d,

    which gives a contradiction because a3a_3 and dd are positive.
    Thus, Option 3 is false.

  4. Option 4: a1a5<a2a4a_1a_5 < a_2a_4
    Compute:

    a1a5=(a32d)(a3+2d)=a324d2,a2a4=(a3d)(a3+d)=a32d2.\begin{aligned} a_1a_5 &= (a_3-2d)(a_3+2d)=a_3^2-4d^2,\\[1mm] a_2a_4 &= (a_3-d)(a_3+d)=a_3^2-d^2. \end{aligned}

    Hence,

    a1a5<a2a4    a324d2<a32d2    4d2<d2    4d2>d2,a_1a_5 < a_2a_4 \iff a_3^2-4d^2 < a_3^2-d^2 \iff -4d^2< -d^2 \iff 4d^2>d^2,

    which is true for d0d\neq0.
    Thus, Option 4 is true.