Solveeit Logo

Question

Question: If A=4i+3j-2k and B = 8i+6j-4k, the angle between A and B is:...

If A=4i+3j-2k and B = 8i+6j-4k, the angle between A and B is:

A

90°

B

45°

C

D

180°

Answer

Explanation

Solution

Solution:

Given:

A=4i^+3j^2k^,B=8i^+6j^4k^.\vec{A}=4\hat{i}+3\hat{j}-2\hat{k},\quad \vec{B}=8\hat{i}+6\hat{j}-4\hat{k}.

Step 1: Compute the dot product

AB=(4)(8)+(3)(6)+(2)(4)=32+18+8=58.\vec{A}\cdot\vec{B} = (4)(8) + (3)(6) + (-2)(-4) = 32 + 18 + 8 = 58.

Step 2: Compute the magnitudes

A=42+32+(2)2=16+9+4=29,\|\vec{A}\| = \sqrt{4^2+3^2+(-2)^2} = \sqrt{16+9+4} = \sqrt{29}, B=82+62+(4)2=64+36+16=116=229.\|\vec{B}\| = \sqrt{8^2+6^2+(-4)^2} = \sqrt{64+36+16} = \sqrt{116} = 2\sqrt{29}.

Step 3: Calculate the cosine of the angle θ\theta

cosθ=ABAB=5829229=58229=5858=1.\cos\theta = \frac{\vec{A}\cdot\vec{B}}{\|\vec{A}\|\|\vec{B}\|} = \frac{58}{\sqrt{29}\cdot 2\sqrt{29}} = \frac{58}{2\cdot29} = \frac{58}{58} = 1.

Thus,

θ=cos1(1)=0.\theta = \cos^{-1}(1) = 0^\circ.