Solveeit Logo

Question

Question: If A=4+33-2 and B = 8 +67-4k, the angle between and B is:...

If A=4+33-2 and B = 8 +67-4k, the angle between and B is:

Answer

θ=cos1(225111094569)0.\theta=\cos^{-1}\left(\frac{2251}{\sqrt{1109\,4569}}\right)\approx 0^\circ.

Explanation

Solution

We interpret the given as follows (note that “k” here denotes the unit vector):

A=4i^+33j^2k^,B=8i^+67j^4k^.\vec{A}=4\,\hat{i}+33\,\hat{j}-2\,\hat{k},\quad \vec{B}=8\,\hat{i}+67\,\hat{j}-4\,\hat{k}.

The angle θ\theta between A\vec{A} and B\vec{B} is given by

cosθ=ABAB.\cos\theta=\frac{\vec{A}\cdot\vec{B}}{\|\vec{A}\|\|\vec{B}\|}.

Step 1. Compute the dot product:

AB=(4)(8)+(33)(67)+(2)(4)=32+2211+8=2251.\begin{aligned} \vec{A}\cdot\vec{B} &= (4)(8) + (33)(67) + (-2)(-4)\\[1mm] &= 32 + 2211 + 8\\[1mm] &= 2251. \end{aligned}

Step 2. Compute the magnitudes:

A=42+332+(2)2=16+1089+4=1109.\|\vec{A}\| = \sqrt{4^2+33^2+(-2)^2} = \sqrt{16+1089+4} = \sqrt{1109}. B=82+672+(4)2=64+4489+16=4569.\|\vec{B}\| = \sqrt{8^2+67^2+(-4)^2} = \sqrt{64+4489+16} = \sqrt{4569}.

Step 3. Write the expression for the angle:

cosθ=225111094569.\cos\theta=\frac{2251}{\sqrt{1109}\,\sqrt{4569}}.

Thus,

θ=cos1(225111094569).\theta=\cos^{-1}\left(\frac{2251}{\sqrt{1109\,4569}}\right).

A quick numerical check shows that

110933.3,456967.6,and33.3×67.62251.\sqrt{1109}\approx33.3,\quad \sqrt{4569}\approx67.6,\quad \text{and}\quad 33.3\times67.6\approx2251.

So, cosθ225122511\cos\theta\approx \frac{2251}{2251}\approx 1 and consequently

θcos1(1)0.\theta\approx \cos^{-1}(1) \approx 0^\circ.