Solveeit Logo

Question

Question: If \(a^{2} + 4b^{2} = 12ab,\) then \(\log(a + 2b)\) is...

If a2+4b2=12ab,a^{2} + 4b^{2} = 12ab, then log(a+2b)\log(a + 2b) is

A

12[loga+logblog2]\frac{1}{2}\lbrack\log a + \log b - \log 2\rbrack

B

loga2+logb2+log2\log\frac{a}{2} + \log\frac{b}{2} + \log 2

C

12[loga+logb+4log2]\frac{1}{2}\lbrack\log a + \log b + 4\log 2\rbrack

D

12[logalogb+4log2]\frac{1}{2}\lbrack\log a - \log b + 4\log 2\rbrack

Answer

12[loga+logb+4log2]\frac{1}{2}\lbrack\log a + \log b + 4\log 2\rbrack

Explanation

Solution

a2+4b2=12aba^{2} + 4b^{2} = 12ab \Rightarrow a2+4b2+4ab=16aba^{2} + 4b^{2} + 4ab = 16ab

(a+2b)2=16ab\Rightarrow (a + 2b)^{2} = 16ab

2log(a+2b)=log16+loga+logb\Rightarrow 2\log(a + 2b) = \log 16 + \log a + \log b

\therefore log(a+2b)=12[loga+logb+4log2]\log(a + 2b) = \frac{1}{2}\lbrack\log a + \log b + 4\log 2\rbrack