Solveeit Logo

Question

Question: If A (z<sub>1</sub>), B(z<sub>2</sub>), C(z<sub>3</sub>) are the vertices of a triangle ABC inscribe...

If A (z1), B(z2), C(z3) are the vertices of a triangle ABC inscribed in the circle |z| = 2. Internal angle bisector of the angle A, meet the circum-circle again at D (z4) then –

A

z42 = z2z3

B

z4 = z2z3z1\frac{z_{2}z_{3}}{z_{1}}

C

z4 = z1z2z3\frac{z_{1}z_{2}}{z_{3}}

D

z4 = z1z3z2\frac{z_{1}z_{3}}{z_{2}}

Answer

z42 = z2z3

Explanation

Solution

Sol.

Now Ð BOD = 2 Ð BAD = A

and Ð COD = 2 ÐCAD = A

from the rotation about the point O, we get

z4z2\frac{z_{4}}{z_{2}}= eiA, z3z4\frac{z_{3}}{z_{4}}= eiA Þ z42 = z2 z3