Solveeit Logo

Question

Mathematics Question on Sequence and series

If ax=by=cz=dua^x = b^{y} = c^{z} = d^{u} and a,b,c,da, b,\, c,\, d are in GPGP, then x,y,z,ux,\, y,\, z,\, u are in

A

AP

B

GP

C

HP

D

None of these

Answer

HP

Explanation

Solution

We have,
ax=by=cz=dua^{x}=b^{y}=c^{z}=d^{u}
Let ax=by=cz=du=ka^{x}=b^{y}=c^{z}=d^{u}=k
a=k1/x,b=k1/y,c=k1/z,d=k1/u\Rightarrow a=k^{1 / x}, b=k^{1 / y}, c=k^{1 / z}, d=k^{1 / u} ...(i)
Since, a,b,c,da,\, b,\, c,\, d are in GP.
ba=cb=dc\therefore \frac{b}{a}=\frac{c}{b}=\frac{d}{c}
k1/yk1/x=k1/zk1/y=k1/uk1/z\Rightarrow \frac{k^{1 / y}}{k^{1 / x}}=\frac{k^{1 / z}}{k^{1 / y}}=\frac{k^{1 / u}}{k^{1 / z}}
using Eq.(i)\\{\text{using Eq}. (i)\\}
k1y1x=k1z1y=k1u1z\Rightarrow k^{\frac{1}{y}-\frac{1}{x}}=k^{\frac{1}{z}-\frac{1}{y}}=k^{\frac{1}{u}-\frac{1}{z}}
1y1x=1z1y=1u1z\Rightarrow \frac{1}{y}-\frac{1}{x}=\frac{1}{z}-\frac{1}{y}=\frac{1}{u}-\frac{1}{z}
1x,1y,1z,1u\therefore \frac{1}{x}, \frac{1}{y}, \frac{1}{z}, \frac{1}{u} are in AP.
x,y,z,u\Rightarrow x, y, z, u are in HP.