Question
Question: If \[a{x^4} + b{x^3} + c{x^2} + dx + e = \left| {\begin{array}{*{20}{c}} {{x^3} + 3x}&{x - 1}&{x...
If a{x^4} + b{x^3} + c{x^2} + dx + e = \left| {\begin{array}{*{20}{c}}
{{x^3} + 3x}&{x - 1}&{x + 3} \\\
{x + 1}&{ - 2x}&{x - 4} \\\
{x - 3}&{x + 4}&{3x}
\end{array}} \right| then, e=
A) 1
B) 0
C) 2
D) −1
Explanation
Solution
In linear algebra, the determinant of a matrix is a scalar value which can be calculated from the elements of a square matrix. It is denoted by detAor∣A∣.
For 2×2 matrix, ∣A∣ is nothing but the cross multiplication on the diagonal elements.