Solveeit Logo

Question

Question: If a vector \(\overrightarrow P \) making angles \(\alpha,\beta \) and \(\gamma \) respectively with...

If a vector P\overrightarrow P making angles α,β\alpha,\beta and γ\gamma respectively with the X, Y, and Z axes respectively.
Then sin2α+sin2β+sin2γ={\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma =
A. 0
B. 1
C. 2
D. 3

Explanation

Solution

Hint: Let the given vector P\overrightarrow P be P1i^+P2j^+P3k^{P_1}\hat i + {P_2}\hat j + {P_3}\hat k. Find the relations for the cosα,cosβ\cos \alpha ,\cos \beta and cosγ\cos \gamma by finding the dot product of the vector P\overrightarrow P with the X,Y and Z axes respectively. Use the values of cosα,cosβ\cos \alpha ,\cos \beta and cosγ\cos \gamma to find the value of sin2α+sin2β+sin2γ{\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma

Complete step by step solution:

Let us assume the three dimensional P\overrightarrow P be P1i^+P2j^+P3k^{P_1}\hat i + {P_2}\hat j + {P_3}\hat k. Then the magnitude of the vector P\overrightarrow P will be
P=P12+P22+P32\left| P \right| = \sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2}
It is known that if the angle between two vectors, A\overrightarrow A and B\overrightarrow B is θ\theta , then the given relation is valid.
cosθ=A.BAB\cos \theta = \dfrac{{\overrightarrow A .\overrightarrow B }}{{\left| A \right|\left| B \right|}}.
As we are given in the question, the angle between the vector P\overrightarrow P and xx axis is α\alpha .
The unit vector in the direction of the xx axis is given by i^\hat i. The magnitude of the unit vector is 1.
Substituting the value α\alpha for θ\theta , value P\overrightarrow P for A\overrightarrow A and value i^\hat i for B\overrightarrow B in the relation cosθ=A.BAB\cos \theta = \dfrac{{\overrightarrow A .\overrightarrow B }}{{\left| A \right|\left| B \right|}}, we get
cosα=P.i^Pi^\cos \alpha = \dfrac{{\overrightarrow P .\hat i}}{{\left| P \right|\left| {\hat i} \right|}}
Substituting the value P1i^+P2j^+P3k^{P_1}\hat i + {P_2}\hat j + {P_3}\hat k for P\overrightarrow P , the value P12+P22+P32\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} for P\left| P \right| and the value 1 for i^\left| {\hat i} \right| in the above relation, we get
cosα=(P1i^+P2j^+P3k^).i^P12+P22+P32\cos \alpha = \dfrac{{\left( {{P_1}\hat i + {P_2}\hat j + {P_3}\hat k} \right).\hat i}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}
The equation can be simplified as
cosα=P1P12+P22+P32\cos \alpha = \dfrac{{{P_1}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}, as i^.i^=1\hat i.\hat i = 1
Similarly, the relations can be derived for the cosβ\cos \beta and cosγ\cos \gamma .
cosβ=P2P12+P22+P32\cos \beta = \dfrac{{{P_2}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}
cosγ=P3P12+P22+P32\cos \gamma = \dfrac{{{P_3}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}
We can simplify the given relation sin2α+sin2β+sin2γ{\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma by using the trigonometric identity sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta , we get
1cos2α+1cos2β+1cos2γ 3(cos2α+cos2β+cos2γ)  1 - {\cos ^2}\alpha + 1 - {\cos ^2}\beta + 1 - {\cos ^2}\gamma \\\ \Rightarrow 3 - \left( {{{\cos }^2}\alpha + {{\cos }^2}\beta + {{\cos }^2}\gamma } \right) \\\
Substituting the values of cosα,cosβ\cos \alpha ,\cos \beta and cosγ\cos \gamma in the desired relation 3(cos2α+cos2β+cos2γ)3 - \left( {{{\cos }^2}\alpha + {{\cos }^2}\beta + {{\cos }^2}\gamma } \right)
3((P1P12+P22+P32)2+(P2P12+P22+P32)2+(P3P12+P22+P32)2)3 - \left( {{{\left( {\dfrac{{{P_1}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}} \right)}^2} + {{\left( {\dfrac{{{P_2}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}} \right)}^2} + {{\left( {\dfrac{{{P_3}}}{{\sqrt {{P_1}^2 + {P_2}^2 + {P_3}^2} }}} \right)}^2}} \right)
Simplifying the above expression, we get
3(P12P12+P22+P32+P22P12+P22+P32+P32P12+P22+P32) 3(P12+P22+P32P12+P22+P32) 3(1) 2  3 - \left( {\dfrac{{{P_1}^2}}{{{P_1}^2 + {P_2}^2 + {P_3}^2}} + \dfrac{{{P_2}^2}}{{{P_1}^2 + {P_2}^2 + {P_3}^2}} + \dfrac{{{P_3}^2}}{{{P_1}^2 + {P_2}^2 + {P_3}^2}}} \right) \\\ \Rightarrow 3 - \left( {\dfrac{{{P_1}^2 + {P_2}^2 + {P_3}^2}}{{{P_1}^2 + {P_2}^2 + {P_3}^2}}} \right) \\\ \Rightarrow 3 - \left( 1 \right) \\\ \Rightarrow 2 \\\
Thus the option C is the correct option.

Note: If the angle between two vectors, A\overrightarrow A and B\overrightarrow B is θ\theta , then we can say cosθ=A.BAB\cos \theta = \dfrac{{\overrightarrow A .\overrightarrow B }}{{\left| A \right|\left| B \right|}}. The dot product of the two vectors A1i^+A2j^+A3k^{A_1}\hat i + {A_2}\hat j + {A_3}\hat k and B1i^+B2j^+B3k^{B_1}\hat i + {B_2}\hat j + {B_3}\hat k can be simplified as A1B1+A2B2+A3B3{A_1}{B_1} + {A_2}{B_2} + {A_3}{B_3}. Thus the value (P1i^+P2j^+P3k^).i^\left( {{P_1}\hat i + {P_2}\hat j + {P_3}\hat k} \right).\hat i is simplified as P1+0+0{P_1} + 0 + 0 = P1{P_1}.