Question
Question: If a variable straight line x cos a + y sin a = p which is chord of the hyperbola \(\frac{x^{2}}{a^{...
If a variable straight line x cos a + y sin a = p which is chord of the hyperbola a2x2−b2y2 = 1(b>a) subtend a right angle at the centre of hyperbola, then it always touches a fixed circle whose radius is equal to –
a2+b2ab
b2−a2ab
a2+b2ab
None
b2−a2ab
Solution
x cos a + y sin a = p
a2x2 – b2y2 = 1
intersection point A and B
join eqn of OA, OB
a2x2 – b2y2 =
a2x2 – b2y2 – p2x2cos2α – p2y2sin2α
– p22xypcosαsinα = 0
Chord subtend a right angle at the centre.
Coefficient of x2 + coefficient of y2 = 0
a21 – p2cos2α – b21 – p2sin2α = 0
a21 – b21 = p21
a2b2b2−a2 = p21 Ž p = b2−a2ab
x cos a + y sin a = p touches x2 + y2 = r2 if length of ^ from (0, 0) upon the line = Radius
if cos2α+sin2αp = r Ž p = r
line touches a fixed circle with radius b2−a2ab