Solveeit Logo

Question

Mathematics Question on Conic sections

If a variable point P on an ellipse of eccentricity e is joined to the foci S1S_1 and S2S_2 then the incentre of the triangle PS1S2PS_1S_2 lies on

A

The major axis of the ellipse

B

The circle with radius e

C

Another ellipse of eccentricity 3+e24\sqrt{\frac{3+e^{2}}{4}}

D

None of these

Answer

Another ellipse of eccentricity 3+e24\sqrt{\frac{3+e^{2}}{4}}

Explanation

Solution

Let the ellipse be x2a2+y2b2=1....(1)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\quad....\left(1\right) Then e2=1b2a2....(2)e^{2} = 1-\frac{b^{2}}{a^{2}}\quad ....\left(2\right) Let a point P on (1)\left(1\right) be (acosθ,bsinθ)\left(a\, cos\theta,\, b\, sin\theta\right). The coordinates of foci are S1(ae,0)S_{1} \left(ae, 0\right) and S2(ae,0)S_{2} \left(-ae, \,0\right). Henc S1P=a(1ecosθ)S_{1}P = a\left(1 - ecos \,\theta \right) S2P=a(1+ecosθ)S_{2}P = a\left(1 + ecos \,\theta \right) and S1S2=2aeS_{1}S_{2} = 2ae If (h,k)\left(h, \,k\right) be the coordinates of in centre then h=2ae×acosθ+a(1ecosθ)×ae+a(1+ecosθ)×ae2ae+a(1ecosθ)+a(1+ecosθ)h = \frac{2ae\times \,a \,cos \,\theta + a\left(1 - e \,cos\, \theta \right)\times-ae +a\left(1 + e\, cos\, \theta \right)\times ae}{2ae+a\left(1 - e\, cos\, \theta \right)+a\left(1 + e\, cos \,\theta \right)} =2aecosθ1+e....(3)= \frac{2ae \,cos\, \theta}{1+e}\quad ....\left(3\right) k=besinθ1+e....(4)k = \frac{be\, sin\, \theta}{1+e} \quad ....\left(4\right) Squaring and adding (3)&(4)\left(3\right) \,\&\, \left(4\right) we have, h24a2+k2b2=(e1+e)2\frac{h^{2}}{4a^{2}} + \frac{k^{2}}{b^{2}} = \left(\frac{e}{1+e}\right)^{2} \therefore The locus of the point (h,k)\left(h, k\right) is x24a2λ2+y2b2λ2=1\frac{x^{2}}{4a^{2}\lambda^{2}}+\frac{y^{2}}{b^{2}\lambda^{2}} = 1, where λ=e1+e\lambda = \frac{e}{1+e}. Which is another ellipse with eccentricity =1b24a2=3+e24= \sqrt{1-\frac{b^{2}}{4a^{2}} } = \sqrt{\frac{3+e^{2}}{4}}