Question
Mathematics Question on Straight lines
If a variable line drawn through the intersection of the lines 3x+4y=1 and 4x+3y=1, meets the coordinate axes at A and B, (A=B), then the locus of the midpoint of AB is :
A
6xy=7(x+y)
B
4(x+y)2−28(x+y)+49=0
C
7xy=6(x+y)
D
14(x+y)2−97(x+y)+168=0
Answer
7xy=6(x+y)
Explanation
Solution
L1:4x+3y−12=0
L2:3x+4y−12=0
L1+λL2=0
(4x+3y−12)+λ(3x+4y−12)=0
x(4+3λ−12)+y(3+4λ)−12(1+λ)=0
Point A(4+3λ12(1+λ),0)
Point B(0,3+4λ12(1+λ))
mid point ⇒h=4+3λ6(1+λ)......(i)
k=3+4λ6(1+λ)......(ii)
Eliminate ? from (i) and (ii) then
6(h+k)=>hk
6(x+y)=>xy