Solveeit Logo

Question

Mathematics Question on Straight lines

If a variable line drawn through the intersection of the lines x3+y4=1\frac{x}{3} + \frac{y}{4} = 1 and x4+y3=1\frac{x}{4} + \frac{y}{3} = 1, meets the coordinate axes at AA and BB, (AB)(A \neq B), then the locus of the midpoint of ABAB is :

A

6xy=7(x+y)6xy = 7(x +y)

B

4(x+y)228(x+y)+49=04(x+y)^2-28(x+y)+49=0

C

7xy=6(x+y)7xy=6(x+y)

D

14(x+y)297(x+y)+168=014(x+y)^2-97(x+y)+168=0

Answer

7xy=6(x+y)7xy=6(x+y)

Explanation

Solution

L1:4x+3y12=0L_{1} : 4x+3y-12=0
L2:3x+4y12=0L_{2} : 3x+4y-12=0
L1+λL2=0L_{1}+\lambda L_{2}=0
(4x+3y12)+λ(3x+4y12)=0\left(4x+3y-12\right)+\lambda\left(3x+4y-12\right)=0
x(4+3λ12)+y(3+4λ)12(1+λ)=0x\left(4+3\lambda-12\right)+y\left(3+4\lambda\right)-12\left(1+\lambda\right)=0
Point A(12(1+λ)4+3λ,0)A\left(\frac{12\left(1+\lambda\right)}{4+3\lambda},0\right)
Point B(0,12(1+λ)3+4λ)B\left(0, \frac{12\left(1+\lambda\right)}{3+4\lambda}\right)
mid point h=6(1+λ)4+3λ......(i)\Rightarrow h=\frac{6\left(1+\lambda\right)}{4+3\lambda}......\left(i\right)
k=6(1+λ)3+4λ......(ii)k=\frac{6\left(1+\lambda\right)}{3+4\lambda} ......\left(ii\right)
Eliminate ? from (i) and (ii) then
6(h+k)=>hk6\left(h+k\right)=>hk
6(x+y)=>xy6\left(x+y\right)=>xy