Question
Question: If a variable circle x<sup>2</sup> + y<sup>2</sup> - 2ax + 4ay = 0 intersects the hyperbola xy = 4 a...
If a variable circle x2 + y2 - 2ax + 4ay = 0 intersects the hyperbola xy = 4 at the points (xi, yi) = 1, 2, 3, 4 then locus of the point (4x1+x2+x3+x4,4y1+y2+y3+y4) is:
A
y + 2x = 0
B
y - 2x + 5 = 0
C
y - 2x = 0
D
y + 4x - 7 = 0
Answer
y + 2x = 0
Explanation
Solution
Putting y = 4/x in the equation of the circle, we get. x4 - 2ax3 + 16ax + 16 = 0.
So 4x1+x2+x3+x4=2a
Similarly4y1+y2+y3+y4=−a.
⇒ h = a/2, k = -a
⇒ h = -k/2 ⇒ y + 2x = 0.