Solveeit Logo

Question

Question: If a variable circle x<sup>2</sup> + y<sup>2</sup> - 2ax + 4ay = 0 intersects the hyperbola xy = 4 a...

If a variable circle x2 + y2 - 2ax + 4ay = 0 intersects the hyperbola xy = 4 at the points (xi, yi) = 1, 2, 3, 4 then locus of the point (x1+x2+x3+x44,y1+y2+y3+y44)\left( \frac{x_{1} + x_{2} + x_{3} + x_{4}}{4},\frac{y_{1} + y_{2} + y_{3} + y_{4}}{4} \right) is:

A

y + 2x = 0

B

y - 2x + 5 = 0

C

y - 2x = 0

D

y + 4x - 7 = 0

Answer

y + 2x = 0

Explanation

Solution

Putting y = 4/x in the equation of the circle, we get. x4 - 2ax3 + 16ax + 16 = 0.

So x1+x2+x3+x44=a2\frac{x_{1} + x_{2} + x_{3} + x_{4}}{4} = \frac{a}{2}

Similarlyy1+y2+y3+y44=a\frac{y_{1} + y_{2} + y_{3} + y_{4}}{4} = - a.

⇒ h = a/2, k = -a

⇒ h = -k/2 ⇒ y + 2x = 0.