Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a unit vector a\vec{a} makes an angles π3\frac{\pi}{3} with i^ \hat{i},π4\frac{\pi}{4} with j^\hat{j} and an acute angle θθ with k^\hat{k} then find θθ and hence,the compounds of a\vec{a}.

Answer

Let unit vector a\vec{a} have (a1,a2,a3)(a_{1},a_{2},a_{3}) components.
a=a1i^+a2j^+a3k^\vec{a}=a_{1}\hat{i}+a_{2}\hat{j}+a_{3}\hat{k}
Since a\vec{a} is a unit vector,|a\vec{a}|=1=1.
Also, it is given that a\vec{a} makes angles π3\frac{\pi}{3} with i^\hat{i},π4\frac{\pi}{4} with j^\hat{j},and an acute angle θθ with k^\hat{k}.
Then, we have:
cosπ3=a1acos\frac{\pi}{3}=\frac{a_{1}}{|\vec{a}|}
12=a1[a=1]⇒\frac{1}{2}=a_{1} [|\vec{a}|=1]
cosπ4=a2acos\frac{\pi}{4}=\frac{a_{2}}{|\vec{a}|}
12=a2          [a=1]⇒\frac{1}{\sqrt{2}}=a_{2} \space\space\space\space\space[|\vec{a}|=1]
Also,cosθ=a3a.cosθ=\frac{a_{3}}{|\vec{a}|}.
a3=cosθ⇒a_{3}=cosθ
Now,
a=1|a|=1
a12+a22+a32=1⇒\sqrt{a^{2}_{1}+a^{2}_{2}+a^{2}_{3}}=1
(12)2+(12)2+cos2θ=1⇒(\frac{1}{2})^{2}+(\frac{1}{\sqrt{2}})^{2}+cos^{2}θ=1
14+12+cos2cosθ=1⇒\frac{1}{4}+\frac{1}{2}+cos^{2}cosθ=1
34+cos2θ=1⇒\frac{3}{4}+cos^{2}θ=1
cos2θ=134=14⇒cos^{2}θ=1-\frac{3}{4}=\frac{1}{4}
cosθ=12θ=π3⇒cosθ=\frac{1}{2}⇒θ=\frac{\pi}{3}
a3=cosπ3=12∴a_{3}=cos\frac{\pi}{3}=\frac{1}{2}
Hence,θ=π3θ=\frac{\pi}{3} and the components of a\vec{a} are((12,12,12)(\frac{1}{2},\frac{1}{\sqrt{2}},\frac{1}{2})).