Solveeit Logo

Question

Question: If a unit vector lies in yz–plane and makes angles of \(30^{o}\) and \(60^{o}\) with the positive y-...

If a unit vector lies in yz–plane and makes angles of 30o30^{o} and 60o60^{o} with the positive y-axis and z-axis respectively, then its components along the co-ordinate axes will be

A

32,12,0\frac{\sqrt{3}}{2},\frac{1}{2},0

B

0,32,120,\frac{\sqrt{3}}{2},\frac{1}{2}

C

32,0,12\frac{\sqrt{3}}{2},0,\frac{1}{2}

D

0,12,320,\frac{1}{2},\frac{\sqrt{3}}{2}

Answer

0,32,120,\frac{\sqrt{3}}{2},\frac{1}{2}

Explanation

Solution

Let unit vector be yi+zk,y\mathbf{i} + z\mathbf{k}, then y2+z2=1\sqrt{y^{2} + z^{2}} = 1 …..(i)

Since given that cos30=(yj+zk).(yj)yj+zkyj\cos 30{^\circ} = \frac{(y\mathbf{j} + z\mathbf{k}).(y\mathbf{j})}{|y\mathbf{j} + z\mathbf{k}||y\mathbf{j}|}

y2(y2+z2)y=32y=32\Rightarrow \frac{y^{2}}{\left( \sqrt{y^{2} + z^{2}} \right)y} = \frac{\sqrt{3}}{2} \Rightarrow y = \frac{\sqrt{3}}{2},

(y2+z2=1(\because\sqrt{y^{2} + z^{2}} = 1by (i))

Similarly, cos60=(yj+zk).zkyj+zkzkz=12\cos 60{^\circ} = \frac{(y\mathbf{j} + z\mathbf{k}).z\mathbf{k}}{|y\mathbf{j} + z\mathbf{k}||z\mathbf{k}|} \Rightarrow z = \frac{1}{2}

Hence the components of unit vector are 0,32,12.0,\frac{\sqrt{3}}{2},\frac{1}{2}.

Trick : Since the vector lies in yzyz -plane, so it will be either 0i+32j+12k0\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j} + \frac{1}{2}\mathbf{k} or 0i+12j+32k.0\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{\sqrt{3}}{2}\mathbf{k}. But the vector 32j+12k\frac{\sqrt{3}}{2}\mathbf{j} + \frac{1}{2}\mathbf{k} makes angle 3030{^\circ}with yy -axis and that of 6060{^\circ} with z-axis.