Solveeit Logo

Question

Question: If a trigonometric function is given as \[y=\sin \left( 2{{\sin }^{-1}}x \right)\], then show that \...

If a trigonometric function is given as y=sin(2sin1x)y=\sin \left( 2{{\sin }^{-1}}x \right), then show that (1x2)d2ydx2=xdydx4y\left( 1-{{x}^{2}} \right)\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=x\cdot \dfrac{dy}{dx}-4y

Explanation

Solution

Hint: First modify the given expression in simplest form and then find the first and second order derivative. Now convert the second order derivative in terms of first order derivative.

Complete step-by-step solution -
The given expression is,
y=sin(2sin1x)........(i)y=\sin \left( 2{{\sin }^{-1}}x \right)........(i)
Multiplying both sides by sin1{{\sin }^{-1}} , we get
sin1y=sin1sin(2sin1x)\Rightarrow {{\sin }^{-1}}y={{\sin }^{-1}}\sin (2{{\sin }^{-1}}x)
We know sin1sin{{\sin }^{-1}}\sin gets cancelled, so we get
sin1y=(2sin1x)\Rightarrow {{\sin }^{-1}}y=(2{{\sin }^{-1}}x)
Now differentiating with respect to x'x' , we get
ddx(sin1y)=2ddx(sin1x)\dfrac{d}{dx}({{\sin }^{-1}}y)=2\dfrac{d}{dx}({{\sin }^{-1}}x)
We know, ddx(sin1x)=11x2\dfrac{d}{dx}({{\sin }^{-1}}x)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}, applying this formula the above equation can be written as,
11y2dydx=21x2\Rightarrow \dfrac{1}{\sqrt{1-{{y}^{2}}}}\cdot \dfrac{dy}{dx}=\dfrac{2}{\sqrt{1-{{x}^{2}}}}
By cross multiplying, we get
dydx=2(1y21x2)1/2\Rightarrow \dfrac{dy}{dx}=2{{\left( \dfrac{1-{{y}^{2}}}{1-{{x}^{2}}} \right)}^{1/2}}
This is the first derivative, now by squaring both the sides, we get
(dydx)2=4(1y21x2)..........(ii)\Rightarrow {{\left( \dfrac{dy}{dx} \right)}^{2}}=4\left( \dfrac{1-{{y}^{2}}}{1-{{x}^{2}}} \right)..........(ii)
Let us differentiate again to find the second order derivative, so differentiating the above expression with respect to x'x', we get
ddx((dydx)2)=4ddx(1y21x2)\Rightarrow \dfrac{d}{dx}\left( {{\left( \dfrac{dy}{dx} \right)}^{2}} \right)=4\dfrac{d}{dx}\left( \dfrac{1-{{y}^{2}}}{1-{{x}^{2}}} \right)
Applying the quotient rule, i.e., ddx(uv)=vddx(u)uddx(v)v2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}, we get
2dydxd2ydx2=4((1x2)ddx(1y2)(1y2)ddx(1x2)(1x2)2)\Rightarrow 2\dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=4\left( \dfrac{\left( 1-{{x}^{2}} \right)\dfrac{d}{dx}(1-{{y}^{2}})-(1-{{y}^{2}})\dfrac{d}{dx}(1-{{x}^{2}})}{{{\left( 1-{{x}^{2}} \right)}^{2}}} \right)
Applying the derivative, we get
2dydxd2ydx2=4((1x2)(2y)dydx+(1y2)2x(1x2)2)\Rightarrow 2\dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=4\left( \dfrac{(1-{{x}^{2}})(-2y)\dfrac{dy}{dx}+(1-{{y}^{2}})2x}{{{\left( 1-{{x}^{2}} \right)}^{2}}} \right)
Multiplying both sides by (1x2)(1-{{x}^{2}}) , we get

& \Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2\left( \dfrac{(1-{{x}^{2}})(-2y)\dfrac{dy}{dx}+2x(1-{{y}^{2}})}{1-{{x}^{2}}} \right) \\\ & \Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-4y(1-{{x}^{2}})\dfrac{dy}{dx}+4x(1-{{y}^{2}})}{1-{{x}^{2}}} \\\ \end{aligned}$$ Separating the terms, we get $$\Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-4y(1-{{x}^{2}})\dfrac{dy}{dx}}{1-{{x}^{2}}}+\dfrac{4x(1-{{y}^{2}})}{1-{{x}^{2}}}$$ Cancelling the like terms, we get $$\Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-4y\dfrac{dy}{dx}+x\left[ 4\dfrac{(1-{{y}^{2}})}{1-{{x}^{2}}} \right]$$ Now substituting value from equation (ii), w eget $$\Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-4y\dfrac{dy}{dx}+x{{\left( \dfrac{dy}{dx} \right)}^{2}}$$ Taking out the common term, we get $$\Rightarrow \dfrac{dy}{dx}\left[ \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right]=\dfrac{dy}{dx}\left[ -4y+x\left( \dfrac{dy}{dx} \right) \right]$$ Cancelling the like terms, we get $$\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=x\dfrac{dy}{dx}-4y$$ Hence proved. Note: In these types of questions first of all you have to check the given expression before starting the differentiation because sometimes the given expression can be in modified form. Another way of solving this type of problem is finding the first order and second order derivatives, then substituting in $$\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=x\dfrac{dy}{dx}-4y$$, separately and find out whether left hand side is equal to right hand side. In this method also you will get the same result.