Solveeit Logo

Question

Question: If a trigonometric expression is given as \[\sin \theta =n\sin \left( \theta +2\alpha \right)\] then...

If a trigonometric expression is given as sinθ=nsin(θ+2α)\sin \theta =n\sin \left( \theta +2\alpha \right) then tan(θ+α)=\tan \left( \theta +\alpha \right)=
(a)1+n1ntanα\left( a \right)\dfrac{1+n}{1-n}\tan \alpha
(b)1n1+ntanα\left( b \right)\dfrac{1-n}{1+n}\tan \alpha
(c)tanα\left( c \right)\tan \alpha
(d)None\left( d \right)\text{None}

Explanation

Solution

We are asked to find the value of tan(θ+α),\tan \left( \theta +\alpha \right), we start by simplifying sinθ=nsin(θ+2α)\sin \theta =n\sin \left( \theta +2\alpha \right) as sinθsin(θ+2α)=n.\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=n. Then we can apply componendo and dividendo which says if ab=cd\dfrac{a}{b}=\dfrac{c}{d} then a+bab=c+dcd.\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}. Then using sinA+sinB=2sin(A+B2)cos(AB2)\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) and sinAsinB=2sin(AB2)cos(A+B2).\sin A-\sin B=2\sin \left( \dfrac{A-B}{2} \right)\cos \left( \dfrac{A+B}{2} \right). We will simplify our terms at last. Then we will use tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } to get our required solution.

Complete step-by-step solution:
We have been given in the question that sinθ=nsin(θ+2α).\sin \theta =n\sin \left( \theta +2\alpha \right). On simplifying we get, sinθsin(θ+2α)=n.\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=n.
Now we will use componendo and dividendo rule which says that if ab=cd\dfrac{a}{b}=\dfrac{c}{d} then a+bab=c+dcd.\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}. So, we apply this on our equation we got above, i.e. sinθsin(θ+2α)=n1.\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=\dfrac{n}{1}. So, we get,
sinθ+sin(θ+2a)sinθsin(θ+2α)=n+1n1\dfrac{\sin \theta +\sin \left( \theta +2a \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{n+1}{n-1}
Now, we know the trigonometric formulas, i.e.
sinA+sinB=2sin(A+B2)cos(AB2)\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)
sinAsinB=2sin(AB2)cos(A+B2)\sin A-\sin B=2\sin \left( \dfrac{A-B}{2} \right)\cos \left( \dfrac{A+B}{2} \right)
So, take A as θ\theta and B as θ+2α.\theta +2\alpha . So, we get,
n+1n1=2sin(θ+θ+2α2)cos(θ(θ+2α)2)2cos(θ+θ+2α2)sin(θ(θ+2α)2)\dfrac{n+1}{n-1}=\dfrac{2\sin \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\cos \left( \dfrac{\theta -\left( \theta +2\alpha \right)}{2} \right)}{2\cos \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\sin \left( \dfrac{\theta -\left( \theta +2\alpha \right)}{2} \right)}
Simplifying further, we get,
2sin(θ+α)cos(α)2sin(α)cos(θ+α)=n+1n1\Rightarrow \dfrac{2\sin \left( \theta +\alpha \right)\cos \left( -\alpha \right)}{2\sin \left( -\alpha \right)\cos \left( \theta +\alpha \right)}=\dfrac{n+1}{n-1}
Now we know that cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta and sin(θ)=sinθ.\sin \left( -\theta \right)=-\sin \theta . So, we get,
2sin(θ+α)cosα2sinαcos(θ+α)=n+1n1\Rightarrow \dfrac{2\sin \left( \theta +\alpha \right)\cos \alpha }{-2\sin \alpha \cos \left( \theta +\alpha \right) }=\dfrac{n+1}{n-1}
Now, separating the terms, we get,
sin(θ+α)cos(θ+α).cosαsinα=n+1n1\Rightarrow \dfrac{-\sin \left( \theta +\alpha \right)}{\cos \left( \theta +\alpha \right) }.\dfrac{\cos \alpha }{\sin \alpha }=\dfrac{n+1}{n-1}
As, sinθcosθ=tanθ,\dfrac{\sin \theta }{\cos \theta }=\tan \theta , we get,
tan(θ+α)tanα=n+1n1\Rightarrow \dfrac{-\tan \left( \theta +\alpha \right)}{\tan \alpha }=\dfrac{n+1}{n-1}
On shifting tanα\tan \alpha we get,
tan(θ+α)=n+1n1tanα\Rightarrow -\tan \left( \theta +\alpha \right) =\dfrac{n+1}{n-1}\tan \alpha
On multiplying both the sides, we get,
tan(θ+α)=(n+1)(n1)tana\Rightarrow \tan \left( \theta +\alpha \right)=\dfrac{-\left( n+1 \right)}{\left( n-1 \right)}\tan a
Now, (n1)=1n- (n – 1) = 1 – n. So, we get,
tan(θ+α)=n+11ntanα\Rightarrow \tan \left( \theta +\alpha \right)=\dfrac{n+1}{1-n}\tan \alpha
Or it can be written as,
tan(θ+α)=1+n1ntanα\Rightarrow \tan \left( \theta +\alpha \right)=\dfrac{1+n}{1-n}\tan \alpha
Hence, the right option is (a).

Note: Remember that θ(θ+2α)2\dfrac{\theta -\left( \theta +2\alpha \right)}{2} will give us θθ2α2=02α2=α\dfrac{\theta -\theta -2\alpha }{2}=\dfrac{0-2\alpha }{2}=-\alpha and θ+(θ+2α)2\dfrac{\theta +\left( \theta +2\alpha \right)}{2} will give us θ+θ+2α2=2θ+2α2=θ+α.\dfrac{\theta +\theta +2\alpha }{2}=\dfrac{2\theta +2\alpha }{2}=\theta +\alpha . Also, cosαsinα=1sinαcosα\dfrac{\cos \alpha }{\sin \alpha }=\dfrac{1}{\dfrac{\sin \alpha }{\cos \alpha }} as sinθcosθ=tanθ.\dfrac{\sin \theta }{\cos \theta }=\tan \theta . So, 1sinαcosα=1tanα.\dfrac{1}{\dfrac{\sin \alpha }{\cos \alpha }}=\dfrac{1}{\tan \alpha }. Lastly, always remember that the product of two negatives is always positive.