Solveeit Logo

Question

Question: If a trigonometric equation is given as \(\tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\c...

If a trigonometric equation is given as tanθtan(1200θ)tan(1200+θ)=13\tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\dfrac{1}{\sqrt{3}} then θ=\theta = .
(a) nπ3π12,nz\dfrac{n\pi }{3}-\dfrac{\pi }{12},n\in z
(b) nπ3π18,nz\dfrac{n\pi }{3}-\dfrac{\pi }{18},n\in z
(c) nπ3+π18,nz\dfrac{n\pi }{3}+\dfrac{\pi }{18},n\in z
(d) nπ3+π12,nz\dfrac{n\pi }{3}+\dfrac{\pi }{12},n\in z

Explanation

Solution

Hint: For solving this question we will use the formulas like tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} and tan(AB)=tanAtanB1+tanAtanB\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} for proving tanθtan(1200θ)tan(1200+θ)=tan3θ\tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\tan 3\theta . After that, we will use the result of the solution of equation tanx=tany\tan x=\tan y to write the final answer.

Complete step-by-step solution -
Given:
It is given that, tanθtan(1200θ)tan(1200+θ)=13\tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\dfrac{1}{\sqrt{3}} and we have to find the suitable values of θ\theta .
Now, before we proceed we should know the following formulas:
tan(A+B)=tanA+tanB1tanAtanB..................(1) tan(AB)=tanAtanB1+tanAtanB..................(2) tan1200=3......................................(3) (a+b)(ab)=a2b2..........................(4) tan3θ=3tanθtan3θ13tan2θ........................(5) \begin{aligned} & \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}..................\left( 1 \right) \\\ & \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}..................\left( 2 \right) \\\ & \tan {{120}^{0}}=-\sqrt{3}......................................\left( 3 \right) \\\ & \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}..........................\left( 4 \right) \\\ & \tan 3\theta =\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }........................\left( 5 \right) \\\ \end{aligned}
Now, we will be using the above formulas for solving this question.
Now, first, we will find the value of tan(1200θ)\tan \left( {{120}^{0}}-\theta \right) in terms of tanθ\tan \theta with the help of formula in the equation (2). Then,
tan(1200θ)=tan1200tanθ1+tan1200tanθ\tan \left( {{120}^{0}}-\theta \right)=\dfrac{\tan {{120}^{0}}-\tan \theta }{1+\tan {{120}^{0}}\tan \theta }
Now, put tan1200=3\tan {{120}^{0}}=-\sqrt{3} in the above equation from the equation (3). Then,
tan(1200θ)=tan1200tanθ1+tan1200tanθ tan(1200θ)=3tanθ13tanθ tan(1200θ)=(3+tanθ)(13tanθ) tan(1200θ)=(3+tanθ)(3tanθ1)......................(6) \begin{aligned} & \tan \left( {{120}^{0}}-\theta \right)=\dfrac{\tan {{120}^{0}}-\tan \theta }{1+\tan {{120}^{0}}\tan \theta } \\\ & \Rightarrow \tan \left( {{120}^{0}}-\theta \right)=\dfrac{-\sqrt{3}-\tan \theta }{1-\sqrt{3}\tan \theta } \\\ & \Rightarrow \tan \left( {{120}^{0}}-\theta \right)=-\dfrac{\left( \sqrt{3}+\tan \theta \right)}{\left( 1-\sqrt{3}\tan \theta \right)} \\\ & \Rightarrow \tan \left( {{120}^{0}}-\theta \right)=\dfrac{\left( \sqrt{3}+\tan \theta \right)}{\left( \sqrt{3}\tan \theta -1 \right)}......................\left( 6 \right) \\\ \end{aligned}
Now, first, we will find the value of tan(1200+θ)\tan \left( {{120}^{0}}+\theta \right) in terms of tanθ\tan \theta with the help of formula in the equation (1). Then,
tan(1200+θ)=tan1200+tanθ1tan1200tanθ\tan \left( {{120}^{0}}+\theta \right)=\dfrac{\tan {{120}^{0}}+\tan \theta }{1-\tan {{120}^{0}}\tan \theta }
Now, put tan1200=3\tan {{120}^{0}}=-\sqrt{3} in the above equation from the equation (3). Then,
tan(1200+θ)=tan1200+tanθ1tan1200tanθ tan(1200+θ)=3+tanθ1(3)tanθ tan(1200+θ)=tanθ31+3tanθ.................(7) \begin{aligned} & \tan \left( {{120}^{0}}+\theta \right)=\dfrac{\tan {{120}^{0}}+\tan \theta }{1-\tan {{120}^{0}}\tan \theta } \\\ & \Rightarrow \tan \left( {{120}^{0}}+\theta \right)=\dfrac{-\sqrt{3}+\tan \theta }{1-\left( -\sqrt{3} \right)\tan \theta } \\\ & \Rightarrow \tan \left( {{120}^{0}}+\theta \right)=\dfrac{\tan \theta -\sqrt{3}}{1+\sqrt{3}\tan \theta }.................\left( 7 \right) \\\ \end{aligned}
Now, we will solve for tanθtan(1200θ)tan(1200+θ)\tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right) by substituting tan(1200θ)=(3+tanθ)(3tanθ1)\tan \left( {{120}^{0}}-\theta \right)=\dfrac{\left( \sqrt{3}+\tan \theta \right)}{\left( \sqrt{3}\tan \theta -1 \right)} from equation (6) and tan(1200+θ)=tanθ31+3tanθ\tan \left( {{120}^{0}}+\theta \right)=\dfrac{\tan \theta -\sqrt{3}}{1+\sqrt{3}\tan \theta } from equation (7). Then,
tanθtan(1200θ)tan(1200+θ) tanθtan(1200θ)tan(1200+θ)=tanθ×(3+tanθ)(3tanθ1)×(tanθ3)(1+3tanθ) tanθtan(1200θ)tan(1200+θ)=tanθ×(tanθ+3)×(tanθ3)(3tanθ+1)×(3tanθ1) \begin{aligned} & \tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right) \\\ & \Rightarrow \tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\tan \theta \times \dfrac{\left( \sqrt{3}+\tan \theta \right)}{\left( \sqrt{3}\tan \theta -1 \right)}\times \dfrac{\left( \tan \theta -\sqrt{3} \right)}{\left( 1+\sqrt{3}\tan \theta \right)} \\\ & \Rightarrow \tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\tan \theta \times \dfrac{\left( \tan \theta +\sqrt{3} \right)\times \left( \tan \theta -\sqrt{3} \right)}{\left( \sqrt{3}\tan \theta +1 \right)\times \left( \sqrt{3}\tan \theta -1 \right)} \\\ \end{aligned}
Now, use the formula (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} form equation (4) to write (tanθ+3)×(tanθ3)=tan2θ3\left( \tan \theta +\sqrt{3} \right)\times \left( \tan \theta -\sqrt{3} \right)={{\tan }^{2}}\theta -3 and (3tanθ+1)×(3tanθ1)=3tan2θ1\left( \sqrt{3}\tan \theta +1 \right)\times \left( \sqrt{3}\tan \theta -1 \right)=3{{\tan }^{2}}\theta -1 in the above equation. Then,
tanθtan(1200θ)tan(1200+θ)=tanθ×(tanθ+3)×(tanθ3)(3tanθ+1)×(3tanθ1) tanθtan(1200θ)tan(1200+θ)=tanθ×(tan2θ3)(3tan2θ1) tanθtan(1200θ)tan(1200+θ)=(tan3θ3tanθ)(3tan2θ1) tanθtan(1200θ)tan(1200+θ)=(3tanθtan3θ)(3tan2θ1) tanθtan(1200θ)tan(1200+θ)=(3tanθtan3θ)(13tan2θ) \begin{aligned} & \tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\tan \theta \times \dfrac{\left( \tan \theta +\sqrt{3} \right)\times \left( \tan \theta -\sqrt{3} \right)}{\left( \sqrt{3}\tan \theta +1 \right)\times \left( \sqrt{3}\tan \theta -1 \right)} \\\ & \Rightarrow \tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\tan \theta \times \dfrac{\left( {{\tan }^{2}}\theta -3 \right)}{\left( 3{{\tan }^{2}}\theta -1 \right)} \\\ & \Rightarrow \tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\dfrac{\left( {{\tan }^{3}}\theta -3\tan \theta \right)}{\left( 3{{\tan }^{2}}\theta -1 \right)} \\\ & \Rightarrow \tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=-\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)}{\left( 3{{\tan }^{2}}\theta -1 \right)} \\\ & \Rightarrow \tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right)} \\\ \end{aligned}
Now, from equation (5) we know that, tan3θ=3tanθtan3θ13tan2θ\tan 3\theta =\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } . Then,
tanθtan(1200θ)tan(1200+θ)=(3tanθtan3θ)(13tan2θ) tanθtan(1200θ)tan(1200+θ)=tan3θ \begin{aligned} & \tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\dfrac{\left( 3\tan \theta -{{\tan }^{3}}\theta \right)}{\left( 1-3{{\tan }^{2}}\theta \right)} \\\ & \Rightarrow \tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\tan 3\theta \\\ \end{aligned}
Now, as it is given that tanθtan(1200θ)tan(1200+θ)=13\tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\dfrac{1}{\sqrt{3}} . Then,
tanθtan(1200θ)tan(1200+θ)=tan3θ tan3θ=13 \begin{aligned} & \tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\tan 3\theta \\\ & \Rightarrow \tan 3\theta =\dfrac{1}{\sqrt{3}} \\\ \end{aligned}
Now, we know that tanπ6=13\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}} . Then,
tan3θ=13 tan3θ=tanπ6..........................(8) \begin{aligned} & \tan 3\theta =\dfrac{1}{\sqrt{3}} \\\ & \Rightarrow \tan 3\theta =\tan \dfrac{\pi }{6}..........................\left( 8 \right) \\\ \end{aligned}
Now, before we proceed we should know one important result which we will use here.
If tanx=tany\tan x=\tan y , then the general solution for xx in terms of y can be written as,
x=nπ+y....................(9)x=n\pi +y....................\left( 9 \right) , where nn is any integer.
From equation (8) we know that, tan3θ=tanπ6\tan 3\theta =\tan \dfrac{\pi }{6} . So, we can use the formula from the equation (9). Then,
tan3θ=tanπ6 3θ=nπ+π6,nz θ=nπ3+π18,nz \begin{aligned} & \tan 3\theta =\tan \dfrac{\pi }{6} \\\ & \Rightarrow 3\theta =n\pi +\dfrac{\pi }{6},n\in z \\\ & \Rightarrow \theta =\dfrac{n\pi }{3}+\dfrac{\pi }{18},n\in z \\\ \end{aligned}
Now, from the above result, we conclude that, if tanθtan(1200θ)tan(1200+θ)=13\tan \theta \cdot \tan \left( {{120}^{0}}-\theta \right)\cdot \tan \left( {{120}^{0}}+\theta \right)=\dfrac{1}{\sqrt{3}} , then
θ=nπ3+π18,nz\theta =\dfrac{n\pi }{3}+\dfrac{\pi }{18},n\in z .
Hence, (c) will be the correct option.

Note: Here, the student should first understand what is asked in the problem and then proceed in the right direction to get the correct answer. And we should remember the results like tan3θ=3tanθtan3θ13tan2θ\tan 3\theta =\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } and solution of the equation tanx=tany\tan x=\tan y correctly and apply them without any mistake while solving. Moreover, we should avoid making calculation mistakes and after writing the final answer for such questions we should select the correct option only.