Solveeit Logo

Question

Question: If a trigonometric equation is given as \(\sin \left( \dfrac{\pi }{4}.\cot \theta \right)=\cos \left...

If a trigonometric equation is given as sin(π4.cotθ)=cos(π4.tanθ)\sin \left( \dfrac{\pi }{4}.\cot \theta \right)=\cos \left( \dfrac{\pi }{4}.\tan \theta \right), then θ\theta =
A) nπ+(π2)n\pi +\left( \dfrac{\pi }{2} \right)
B) nπ+(π3)n\pi +\left( \dfrac{\pi }{3} \right)
C) nπ+(π4)n\pi +\left( \dfrac{\pi }{4} \right)
D) nπ+(1)nπ4n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}

Explanation

Solution

We solve this problem by converting either sin to cos (or) cos to sin using the formula cosθ=sin(π2θ)\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right) and then we equate both the angles. After changing the angles into the same trigonometric identity, we equate the angles and we solve them to find the value of θ\theta .

Complete step by step answer:
We use the formula,
cosθ=sin(π2θ)\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right)
Let us consider the given trigonometric equation
sin(π4.cotθ)=cos(π4.tanθ)\sin \left( \dfrac{\pi }{4}.\cot \theta \right)=\cos \left( \dfrac{\pi }{4}.\tan \theta \right)
Now, we convert cos into sin to equate the angles. So, we get,
sin(π4.cotθ)=sin(π2π4.tanθ)\sin \left( \dfrac{\pi }{4}.\cot \theta \right)=\sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{4}.\tan \theta \right)
As the trigonometric terms on both sides are equal. By equating both the angles, we get
π4.cotθ=π2π4.tanθ π4.cotθ+π4.tanθ=π2 π4(cotθ+tanθ)=π2 \begin{aligned} & \Rightarrow \dfrac{\pi }{4}.\cot \theta =\dfrac{\pi }{2}-\dfrac{\pi }{4}.\tan \theta \\\ & \Rightarrow \dfrac{\pi }{4}.\cot \theta +\dfrac{\pi }{4}.\tan \theta =\dfrac{\pi }{2} \\\ & \Rightarrow \dfrac{\pi }{4}\left( \cot \theta +\tan \theta \right)=\dfrac{\pi }{2} \\\ \end{aligned}
Now we convert cotθ\cot \theta to tanθ\tan \theta , we get
π4(1tanθ+tanθ)=π2\dfrac{\pi }{4}\left( \dfrac{1}{\tan \theta }+\tan \theta \right)=\dfrac{\pi }{2}
After cancelling π4\dfrac{\pi }{4} on both the sides, we get
1tanθ+tanθ=2 1+tan2θtanθ=2 1+tan2θ=2tanθ tan2θ2tanθ+1=0 \begin{aligned} & \Rightarrow \dfrac{1}{\tan \theta }+\tan \theta =2 \\\ & \Rightarrow \dfrac{1+{{\tan }^{2}}\theta }{\tan \theta }=2 \\\ & \Rightarrow 1+{{\tan }^{2}}\theta =2\tan \theta \\\ & \Rightarrow {{\tan }^{2}}\theta -2\tan \theta +1=0 \\\ \end{aligned}
Using the formula of (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab, we can factorize the above quadratic equation as,
(tanθ1)2=0 tanθ1=0 tanθ=1 tanθ=tanπ4 \begin{aligned} & \Rightarrow {{\left( \tan \theta -1 \right)}^{2}}=0 \\\ & \Rightarrow \tan \theta -1=0 \\\ & \Rightarrow \tan \theta =1 \\\ & \Rightarrow \tan \theta =\tan \dfrac{\pi }{4} \\\ \end{aligned}
But we have to find the general solution for tanθ=1\tan \theta =1.
Let us consider the formula for finding the general solution.
If α\alpha is the principal solution of tanθ=k\tan \theta =k, then the general solution of tanθ\tan \theta is nπ+αn\pi +\alpha .
Using the above formula we can write the general solution for tanθ=1\tan \theta =1 as,
The general solution for tanθ=tanπ4\tan \theta =\tan \dfrac{\pi }{4} is nπ+(π4)n\pi +\left( \dfrac{\pi }{4} \right)
Therefore, if sin(π4.cotθ)=cos(π4.tanθ)\sin \left( \dfrac{\pi }{4}.\cot \theta \right)=\cos \left( \dfrac{\pi }{4}.\tan \theta \right), then θ=nπ+(π4)\theta =n\pi +\left( \dfrac{\pi }{4} \right)

So, the correct answer is “Option C”.

Note: One can make a mistake by considering the general of solution of tanθ=1\tan \theta =1 as nπ+(1)nπ4n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4} instead of nπ+(π4)n\pi +\left( \dfrac{\pi }{4} \right). So, one need to be careful while writing the general terms for trigonometric identities. For example, if we consider nπ+(1)nπ4n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4} as the general solution for tanθ=1\tan \theta =1, then by taking n=1, nπ+(1)nπ4n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4} gives us -1, which is not the solution for tanθ=1\tan \theta =1. So, one must be careful while writing the general solution for the trigonometric identities.