Solveeit Logo

Question

Question: If a trigonometric equation is given as \(\cos x + \sin x = \sqrt 2 \cos x\) then show that \(\cos x...

If a trigonometric equation is given as cosx+sinx=2cosx\cos x + \sin x = \sqrt 2 \cos x then show that cosxsinx=2sinx\cos x - \sin x = \sqrt 2 \sin x .

Explanation

Solution

Hint: In this question, we use the basic trigonometric and algebraic identities. We have to apply some algebraic operations in the given question and then convert into the required equation. Like we use algebraic identities (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab and a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right).

Complete step-by-step solution:
Given, cosx+sinx=2cosx..............(1)\cos x + \sin x = \sqrt 2 \cos x..............\left( 1 \right)
Now, squaring both sides in (1) equation.
(cosx+sinx)2=(2cosx)2\Rightarrow {\left( {\cos x + \sin x} \right)^2} = {\left( {\sqrt 2 \cos x} \right)^2}
Now, we use (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
cos2x+sin2x+2×cosx×sinx=2cos2x 2cosxsinx=2cos2xcos2xsin2x 2cosxsinx=cos2xsin2x  \Rightarrow {\cos ^2}x + {\sin ^2}x + 2 \times \cos x \times \sin x = 2{\cos ^2}x \\\ \Rightarrow 2\cos x\sin x = 2{\cos ^2}x - {\cos ^2}x - {\sin ^2}x \\\ \Rightarrow 2\cos x\sin x = {\cos ^2}x - {\sin ^2}x \\\
Using algebraic identity, a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)
2cosxsinx=(cosx+sinx)(cosxsinx)\Rightarrow 2\cos x\sin x = \left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)
From (1) equation, cosx+sinx=2cosx\cos x + \sin x = \sqrt 2 \cos x
2cosxsinx=2cosx(cosxsinx)\Rightarrow 2\cos x\sin x = \sqrt 2 \cos x\left( {\cos x - \sin x} \right)
Now, cosx\cos x cancel from both sides.
2(cosxsinx)=2sinx cosxsinx=2sinx2 cosxsinx=2sinx  \Rightarrow \sqrt 2 \left( {\cos x - \sin x} \right) = 2\sin x \\\ \Rightarrow \cos x - \sin x = \dfrac{{2\sin x}}{{\sqrt 2 }} \\\ \Rightarrow \cos x - \sin x = \sqrt 2 \sin x \\\
Hence, it is proved cosxsinx=2sinx\cos x - \sin x = \sqrt 2 \sin x

Note: In such types of problems we can use two different ways. First way we already mention in above and now in second way, we have to squaring both sides in given and then by using (sin2x=2sinxcosx and cos2x=2cos2x1)\left( {\sin 2x = 2\sin x\cos x{\text{ and }}\cos 2x = 2{{\cos }^2}x - 1} \right) these identities we can get the value of x. So, after putting the value of x in question we will get the answer.